THE EFFECT OF UNLABELED SAMPLES IN REDUCING THE SMALL SAMPLE-SIZE PROBLEM AND MITIGATING THE HUGHES PHENOMENON

被引:392
作者
SHAHSHAHANI, BM [1 ]
LANDGREBE, DA [1 ]
机构
[1] PURDUE UNIV, SCH ELECT ENGN, W LAFAYETTE, IN 47906 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 1994年 / 32卷 / 05期
基金
美国国家航空航天局;
关键词
D O I
10.1109/36.312897
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this paper, we study the use of unlabeled samples in reducing the problem of small training sample size that can severely affect the recognition rate of classifiers when the dimensionality of the multispectral data is high. We show that by using additional unlabeled samples that are available at no extra cost, the performance may be improved, and therefore the Hughes phenomenon can be mitigated. Furthermore, by experiments, we show that by using additional unlabeled samples more representative estimates can be obtained. We also propose a semiparametric method for incorporating the training (i.e., labeled) and unlabeled samples simultaneously into the parameter estimation process.
引用
收藏
页码:1087 / 1095
页数:9
相关论文
共 16 条
[1]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[2]   NONPARAMETRIC BAYES ERROR ESTIMATION USING UNCLASSIFIED SAMPLES [J].
FUKUNAGA, K ;
KESSELL, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1973, 19 (04) :434-440
[3]  
FUKUNAGA K, 1990, INTRO STATISTICAL PA
[4]  
HALL P, 1985, J ROY STAT SOC B MET, V47, P155
[5]   ON MEAN ACCURACY OF STATISTICAL PATTERN RECOGNIZERS [J].
HUGHES, GF .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1968, 14 (01) :55-+
[6]  
LANDGREBE DA, INTRO MULTISPEC
[7]   ANALYZING HIGH-DIMENSIONAL MULTISPECTRAL DATA [J].
LEE, C ;
LANDGREBE, DA .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1993, 31 (04) :792-800
[8]   FEATURE-EXTRACTION BASED ON DECISION BOUNDARIES [J].
LEE, CH ;
LANDGREBE, DA .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1993, 15 (04) :388-400
[9]   VARIANCE COMPARISONS FOR UNBIASED ESTIMATORS OF PROBABILITY OF CORRECT CLASSIFICATION [J].
MOORE, DS ;
WHITSITT, SJ ;
LANDGREBE, DA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1976, 22 (01) :102-105
[10]   MIXTURE DENSITIES, MAXIMUM-LIKELIHOOD AND THE EM ALGORITHM [J].
REDNER, RA ;
WALKER, HF .
SIAM REVIEW, 1984, 26 (02) :195-237