RELATING REAL-TIME BACKPROPAGATION AND BACKPROPAGATION-THROUGH-TIME - AN APPLICATION OF FLOW GRAPH INTERRECIPROCITY

被引:21
作者
BEAUFAYS, F
WAN, EA
机构
关键词
D O I
10.1162/neco.1994.6.2.296
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We show that signal flow graph theory provides a simple way to relate two popular algorithms used for adapting dynamic neural networks, real-time backpropagation and backpropagation-through-time. Starting with the now graph for real-time backpropagation, we use a simple transposition to produce a second graph. The new graph is shown to be interreciprocal with the original and to correspond to the backpropagation-through-time algorithm. Interreciprocity provides a theoretical argument to verify that both flow graphs implement the same overall weight update.
引用
收藏
页码:296 / 306
页数:11
相关论文
共 20 条
[1]  
[Anonymous], 1980, LINEAR SYSTEMS
[2]  
[Anonymous], 1991, INTRO THEORY NEURAL, DOI DOI 10.1201/9780429499661
[3]  
BORDEWIJK JL, 1956, MATH METHODS, V0006, P00001
[4]  
BRYSON A, 1969, APPLIED OPTIMAL CONT
[5]  
LECUN Y, 1988, 1988 P CONN MOD SUMM, P21
[6]  
Ljung L., 1999, SYSTEM IDENTIFICATIO
[7]  
McClelland J. L., 1986, PARALLEL DISTRIBUTED, V1
[8]  
Narendra K S, 1990, IEEE Trans Neural Netw, V1, P4, DOI 10.1109/72.80202
[9]  
Nguyen D. H., 1990, IEEE Control Systems Magazine, V10, P18, DOI 10.1109/37.55119
[10]  
OPPENHEIM AV, 1989, DIGITAL SIGNAL PROCE