ROTATING PERIODIC-ORBITS OF THE PARAMETRICALLY EXCITED PENDULUM

被引:87
作者
CLIFFORD, MJ [1 ]
BISHOP, SR [1 ]
机构
[1] UNIV LONDON UNIV COLL, CTR NONLINEAR DYNAM & APPLICAT, LONDON WC1E 6BT, ENGLAND
关键词
D O I
10.1016/0375-9601(95)00255-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Rotating orbits in the parametrically excited pendulum are considered. The location of subharmonic orbits shows that there is in general no easily defined lower bound on the forcing amplitude, p, below which rotating orbits cannot exist. This is particularly important if the parametrically excited pendulum is considered in terms of escape from a potential well.
引用
收藏
页码:191 / 196
页数:6
相关论文
共 23 条
[1]   A PENDULUM THEOREM [J].
ACHESON, DJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1993, 443 (1917) :239-245
[2]   UPSIDE-DOWN PENDULUMS [J].
ACHESON, DJ ;
MULLIN, T .
NATURE, 1993, 366 (6452) :215-216
[3]  
Birman J. S., 1974, ANN MATH STUDIES, V82
[4]  
BISHOP SR, 1994, EUR J MECH A-SOLID, V12, P581
[5]   ON A PERIODICALLY FORCED, WEAKLY DAMPED PENDULUM .3. VERTICAL FORCING [J].
BRYANT, PJ ;
MILES, JW .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1990, 32 :42-60
[6]   GENERIC FEATURES OF ESCAPE FROM A POTENTIAL WELL UNDER PARAMETRIC-EXCITATION [J].
CLIFFORD, MJ ;
BISHOP, SR .
PHYSICS LETTERS A, 1993, 184 (01) :57-63
[7]  
CLIFFORD MJ, IN PRESS J AUST MA B
[8]  
CLIFFORD MJ, 1994, PARAMETRICALLY EXCIT
[9]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[10]   TOPOLOGICAL ANALYSIS OF LASER WITH SATURABLE ABSORBER IN EXPERIMENTS AND MODELS [J].
Fioretti, A. ;
Molesti, F. ;
Zambon, B. ;
Arimondo, E. ;
Papoff, F. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (03) :559-565