DIFFUSION EQUATIONS AND GEOMETRIC APPROACH

被引:5
作者
STEEB, WH
机构
来源
LETTERE AL NUOVO CIMENTO | 1978年 / 22卷 / 02期
关键词
D O I
10.1007/BF02786131
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:45 / 46
页数:2
相关论文
共 9 条
[1]  
AUCHMUTY JFG, 1975, B MATH BIOL, V37, P323, DOI 10.1007/BF02459519
[2]  
Bluman G.W., 1974, SIMILARITY METHODS D
[3]   SYMMETRIES OF HAMILTON-JACOBI EQUATION [J].
BOYER, CP ;
KALNINS, EG .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (05) :1032-1045
[4]   MODEL FOR OSCILLATORY KINETIC SYSTEMS [J].
DREITLEIN, J ;
SMOES, ML .
JOURNAL OF THEORETICAL BIOLOGY, 1974, 46 (02) :559-572
[5]  
GODBILLOIN C, 1968, GEOMETRIE DIFFERENTI
[6]   GEOMETRIC APPROACH TO INVARIANCE GROUPS AND SOLUTION OF PARTIAL DIFFERENTIAL SYSTEMS [J].
HARRISON, BK ;
ESTABROOK, FB .
JOURNAL OF MATHEMATICAL PHYSICS, 1971, 12 (04) :653-+
[8]   NONLINEAR DYNAMIC-SYSTEMS, LIMIT-CYCLES, TRANSFORMATION GROUPS, AND PERTURBATION TECHNIQUES [J].
STEEB, WH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1977, 10 (12) :L221-L223
[9]   NONLINEAR-SYSTEMS OF DIFFERENTIAL-EQUATIONS INVOLVING LIMIT-CYCLES AND CONSERVATIVE HAMILTONIAN SYSTEMS [J].
STEEB, WH .
PHYSICS LETTERS A, 1977, 62 (04) :211-213