TRANSMISSION OF LIGHT THROUGH DETERMINISTIC APERIODIC NON-FIBONACCIAN MULTILAYERS

被引:78
作者
DULEA, M [1 ]
SEVERIN, M [1 ]
RIKLUND, R [1 ]
机构
[1] LINKOPING UNIV,DEPT PHYS & MEASUREMENT TECHNOL,S-58183 LINKOPING,SWEDEN
来源
PHYSICAL REVIEW B | 1990年 / 42卷 / 06期
关键词
D O I
10.1103/PhysRevB.42.3680
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Optical transmission through binary multilayers arranged according to deterministic aperiodic distribution rules is investigated using an extension of the trace-map technique. It is proven that in order to get a complete description of this ideal experiment, the usual trace map must be combined with a so-called antitrace map containing the off-diagonal elements of the transfer matrix too. The study of the dynamics of the two coupled maps gives useful information concerning the behavior of the transmission coefficient in these structures. Analytical and numerical results are obtained for the two classes of sequences generated by AAB...B and BA and by AA...AB and BA. It is shown that although these sequences are all generalizations of the Fibonacci sequence, the two families have very different properties. © 1990 The American Physical Society.
引用
收藏
页码:3680 / 3689
页数:10
相关论文
共 30 条
[1]  
ABRAMOVITZ AM, 1965, HDB MATH FUNCTIONS
[2]   HOPPING CONDUCTION ON APERIODIC CHAINS [J].
ALDEA, A ;
DULEA, M .
PHYSICAL REVIEW LETTERS, 1988, 60 (16) :1672-1675
[3]  
ALLOUCHE JP, 1986, CR ACAD SCI II, V302, P1135
[4]  
AXEL F, 1988, CR ACAD SCI II, V306, P179
[5]   VIBRATIONAL-MODES IN A ONE-DIMENSIONAL QUASI-ALLOY - THE MORSE CASE [J].
AXEL, F ;
ALLOUCHE, JP ;
KLEMAN, M ;
MENDESFRANCE, M ;
PEYRIERE, J .
JOURNAL DE PHYSIQUE, 1986, 47 (C-3) :181-186
[6]   SYMBOLIC DYNAMICS FOR THE RENORMALIZATION MAP OF A QUASI-PERIODIC SCHRODINGER-EQUATION [J].
CASDAGLI, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 107 (02) :295-318
[7]   ELECTRONS ON ONE-DIMENSIONAL QUASI-LATTICES [J].
FUJITA, M ;
MACHIDA, K .
SOLID STATE COMMUNICATIONS, 1986, 59 (02) :61-65
[8]   DYNAMICAL MAPS, CANTOR SPECTRA, AND LOCALIZATION FOR FIBONACCI AND RELATED QUASIPERIODIC LATTICES [J].
GUMBS, G ;
ALI, MK .
PHYSICAL REVIEW LETTERS, 1988, 60 (11) :1081-1084
[9]  
KALUGIN PA, 1986, ZH EKSP TEOR FIZ, V64, P410
[10]   QUASI-PERIODIC METALLIC MULTILAYERS - GROWTH AND SUPERCONDUCTIVITY [J].
KARKUT, MG ;
TRISCONE, JM ;
ARIOSA, D ;
FISCHER, O .
PHYSICAL REVIEW B, 1986, 34 (06) :4390-4393