EFFECTIVE PROPERTIES OF CEMENTED GRANULAR-MATERIALS

被引:230
作者
DVORKIN, J
NUR, A
YIN, HZ
机构
[1] Department of Geophysics, Stanford University, Stanford
关键词
D O I
10.1016/0167-6636(94)90044-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An analytical model is developed to describe the effective elastic properties of a cemented granular material that is modeled as a random packing of identical spheres. The elastic moduli of grains may differ from those of cement. The effective bulk and shear moduli of the packing are calculated from geometrical parameters (the average number of contacts per sphere and porosity), and from the normal and tangential stiffness of a two-grain combination. The latter are found by solving the problems of normal and tangential deformation of two elastic spherical grains cemented at their contact. A thin cement layer is approximated by an elastic foundation, and the grain-cement interaction problems are reduced to linear integral equations. The solution reveals a peculiar distribution pattern of normal and shear stresses at the cemented grain contacts: the stresses are maximum at the center of the contact region when the cement is soft relative to the grain, and are maximum at the periphery of the contact region when the cement is stiff. Stress distribution shape gradually varies between these two extremes as the cement's stiffness increases. The solution shows that it is mainly the amount of cement that influences the effective elastic properties of cemented granular materials. The radius of the cement layer affects the stiffness of a granular assembly much more strongly than the stiffness of the cement does. This theoretical model is supported by experimental results.
引用
收藏
页码:351 / 366
页数:16
相关论文
共 26 条
[1]   THERMAL OR ELECTRICAL-CONDUCTION THROUGH A GRANULAR MATERIAL [J].
BATCHELOR, GK ;
OBRIEN, RW .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1977, 355 (1682) :313-333
[2]   THE EFFECT OF CEMENT ON THE STRENGTH OF GRANULAR ROCKS [J].
BERNABE, Y ;
FRYER, DT ;
HAYES, JA .
GEOPHYSICAL RESEARCH LETTERS, 1992, 19 (14) :1511-1514
[3]   MICROSTRUCTURAL ANALYSIS OF THE INELASTIC BEHAVIOR OF SEDIMENTARY-ROCK [J].
BRUNO, MS ;
NELSON, RB .
MECHANICS OF MATERIALS, 1991, 12 (02) :95-118
[4]   DISCRETE NUMERICAL-MODEL FOR GRANULAR ASSEMBLIES [J].
CUNDALL, PA ;
STRACK, ODL .
GEOTECHNIQUE, 1979, 29 (01) :47-65
[5]  
CUNDALL PA, 1989, INT C MICROMECHANICS
[6]  
Delves LM, 1985, COMPUTATIONAL METHOD
[7]   THE EFFECTIVE ELASTIC-MODULI OF POROUS GRANULAR ROCKS [J].
DIGBY, PJ .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1981, 48 (04) :803-808
[8]   THE EFFECT OF CEMENTATION ON THE ELASTIC PROPERTIES OF GRANULAR MATERIAL [J].
DVORKIN, J ;
MAVKO, G ;
NUR, A .
MECHANICS OF MATERIALS, 1991, 12 (3-4) :207-217
[9]   ON VISCOSITY OF A CONCENTRATED SUSPENSION OF SOLID SPHERES [J].
FRANKEL, NA ;
ACRIVOS, A .
CHEMICAL ENGINEERING SCIENCE, 1967, 22 (06) :847-&
[10]  
GODDARD JD, 1990, J NONNEWTON FLUID ME, V2, P169