MUTATIONS IN CFTR ASSOCIATED WITH MILD-DISEASE-FORM CL- CHANNELS WITH ALTERED PORE PROPERTIES

被引:409
作者
SHEPPARD, DN
RICH, DP
OSTEDGAARD, LS
GREGORY, RJ
SMITH, AE
WELSH, MJ
机构
[1] UNIV IOWA,COLL MED,DEPT PHYSIOL & BIOPHYS,IOWA CITY,IA 52242
[2] GENZYME CORP,FRAMINGHAM,MA 01701
关键词
D O I
10.1038/362160a0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
THE cystic fibrosis transmembrane conductance regulator (CFTR) is a phosphorylation-regulated Cl- channel located in the apical membrane of epithelia1-10. Although cystic fibrosis (CF) is caused by mutations in a single gene encoding CFTR11,12, the disease has a variable clinical phenotype13,14. The most common mutation associated with cystic fibrosis, deletion of a phenylalanine at position 508 (frequency, 67%), is associated with severe disease15,17. But some missense mutations, for example ones in which arginine is replaced by histidine at residue at 117 (R117H; 0.8%), tryptophan at 334 (0.4%), or proline at 347 (0.5%), are associated with milder disease15,17,18. These missense mutations affect basic residues located at the external end of the second (M2) and in the sixth (M6) putative membrane-spanning sequences. Here we report that, when expressed in heterologous epithelial cells, all three mutants were correctly processed and generated cyclic AMP-regulated apical Cl- currents. Although the macroscopic current properties were normal, the amount of current was reduced. Patch-clamp analysis revealed that all three mutants had reduced single-channel conductances. In addition, R117H showed altered sensitivity to external pH and had altered single-channel kinetics. These results explain the quantitative decrease in macroscopic Cl- current, and suggest that R117, R334 and R347 contribute to the pore of the CFTR Cl- channel. Our results also suggest why R117H, R334W and R347P produce less severe clinical disease and have implications for our understanding of cystic fibrosis.
引用
收藏
页码:160 / 164
页数:5
相关论文
共 26 条
[1]   NUCLEOSIDE TRIPHOSPHATES ARE REQUIRED TO OPEN THE CFTR CHLORIDE CHANNEL [J].
ANDERSON, MP ;
BERGER, HA ;
RICH, DP ;
GREGORY, RJ ;
SMITH, AE ;
WELSH, MJ .
CELL, 1991, 67 (04) :775-784
[2]   DEMONSTRATION THAT CFTR IS A CHLORIDE CHANNEL BY ALTERATION OF ITS ANION SELECTIVITY [J].
ANDERSON, MP ;
GREGORY, RJ ;
THOMPSON, S ;
SOUZA, DW ;
PAUL, S ;
MULLIGAN, RC ;
SMITH, AE ;
WELSH, MJ .
SCIENCE, 1991, 253 (5016) :202-205
[3]   CALCIUM AND CAMP ACTIVATE DIFFERENT CHLORIDE CHANNELS IN THE APICAL MEMBRANE OF NORMAL AND CYSTIC-FIBROSIS EPITHELIA [J].
ANDERSON, MP ;
WELSH, MJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (14) :6003-6007
[4]   PURIFICATION AND FUNCTIONAL RECONSTITUTION OF THE CYSTIC-FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR (CFTR) [J].
BEAR, CE ;
LI, CH ;
KARTNER, N ;
BRIDGES, RJ ;
JENSEN, TJ ;
RAMJEESINGH, M ;
RIORDAN, JR .
CELL, 1992, 68 (04) :809-818
[5]   IDENTIFICATION AND REGULATION OF THE CYSTIC-FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR-GENERATED CHLORIDE CHANNEL [J].
BERGER, HA ;
ANDERSON, MP ;
GREGORY, RJ ;
THOMPSON, S ;
HOWARD, PW ;
MAURER, RA ;
MULLIGAN, R ;
SMITH, AE ;
WELSH, MJ .
JOURNAL OF CLINICAL INVESTIGATION, 1991, 88 (04) :1422-1431
[6]  
BOAT TF, 1989, METABOLIC BASIS INHE, V6, P2649
[7]   DEFECTIVE INTRACELLULAR-TRANSPORT AND PROCESSING OF CFTR IS THE MOLECULAR-BASIS OF MOST CYSTIC-FIBROSIS [J].
CHENG, SH ;
GREGORY, RJ ;
MARSHALL, J ;
PAUL, S ;
SOUZA, DW ;
WHITE, GA ;
ORIORDAN, CR ;
SMITH, AE .
CELL, 1990, 63 (04) :827-834
[8]   PHOSPHORYLATION OF THE R-DOMAIN BY CAMP-DEPENDENT PROTEIN-KINASE REGULATES THE CFTR CHLORIDE CHANNEL [J].
CHENG, SH ;
RICH, DP ;
MARSHALL, J ;
GREGORY, RJ ;
WELSH, MJ ;
SMITH, AE .
CELL, 1991, 66 (05) :1027-1036
[9]   MULTIPLE MUTATIONS IN HIGHLY CONSERVED RESIDUES ARE FOUND IN MILDLY AFFECTED CYSTIC-FIBROSIS PATIENTS [J].
DEAN, M ;
WHITE, MB ;
AMOS, J ;
GERRARD, B ;
STEWART, C ;
KHAW, KT ;
LEPPERT, M .
CELL, 1990, 61 (05) :863-870
[10]   PROCESSING OF MUTANT CYSTIC-FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR IS TEMPERATURE-SENSITIVE [J].
DENNING, GM ;
ANDERSON, MP ;
AMARA, JF ;
MARSHALL, J ;
SMITH, AE ;
WELSH, MJ .
NATURE, 1992, 358 (6389) :761-764