A CRITICAL-POINT FOR RANDOM GRAPHS WITH A GIVEN DEGREE SEQUENCE

被引:1501
作者
MOLLOY, M [1 ]
REED, B [1 ]
机构
[1] UNIV PARIS 06,CNRS,PARIS,FRANCE
关键词
D O I
10.1002/rsa.3240060204
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Given a sequence of nonnegative real numbers lambda(0), lambda(1),... which sum to 1, we consider random graphs having approximately hin vertices of degree i. Essentially, we show that if Sigma i(i - 2)lambda(i) > 0, then such graphs almost surely have a giant component, while if Sigma i(i - 2)lambda(i) < 0, then almost surely all components in such graphs are small. We can apply these results to G(n,p), G(n,M), and other well-known models of random graphs. There are also applications related to the chromatic number of sparse random graphs. (C) 1995 John Wiley & Sons, Inc.
引用
收藏
页码:161 / 179
页数:19
相关论文
共 21 条
[1]  
[Anonymous], 1967, TOHOKU MATH J 2 SERI, DOI DOI 10.2748/TMJ/1178243286
[2]   ASYMPTOTIC NUMBER OF LABELED GRAPHS WITH GIVEN DEGREE SEQUENCES [J].
BENDER, EA ;
CANFIELD, ER .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1978, 24 (03) :296-307
[3]  
Bollobas B., 1985, ANN DISCRETE MATH, V28, P47
[4]  
BOLLOBAS B, 1985, ANN DISCRETE MATH, V28, P23
[5]  
Bollobas B., 1988, COLL MATH SOC J BOLY, V52, P113
[6]  
Bollobas B., 1985, RANDOM GRAPHS
[7]  
CHVATAL V, 1991, RANDOM STRUCT ALGOR, V2, P11
[8]  
ERDOS P, 1960, MAGYAR TUD AKAD MAT, V5, P17
[9]  
FELLER W, 1966, INTRO PROBABILITY TH, V1
[10]   THE 1ST CYCLES IN AN EVOLVING GRAPH [J].
FLAJOLET, P ;
KNUTH, DE ;
PITTEL, B .
DISCRETE MATHEMATICS, 1989, 75 (1-3) :167-215