APPROXIMATION AND REGULAR PERTURBATION OF OPTIMAL-CONTROL PROBLEMS VIA HAMILTON-JACOBI THEORY

被引:3
作者
BARDI, M [1 ]
SARTORI, C [1 ]
机构
[1] UNIV PADUA,DIPARTIMENTO METODI & MODELLI MATEMAT,I-35131 PADUA,ITALY
关键词
D O I
10.1007/BF01447738
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present two convergence theorems for Hamilton-Jacobi equations and we apply them to the convergence of approximations and perturbations of optimal control problems and of two-players zero-sum differential games. One of our results is, for instance, the following. Let T and T(h) be the minimal time functions to reach the origin of two control systems y' = f(y, a) and y' = f(h)(y, a), both locally controllable in the origin, and let K be any compact set of points controllable to the origin. If parallel-to f(h) - f parallel-to infinity less-than-or-equal-to Ch, then \T(x) - T(h)(x)\ less-than-or-equal-to C(k)h-alpha, for all x is-an-element-of K, where alpha is the exponent of Holder continuity of T(x).
引用
收藏
页码:113 / 128
页数:16
相关论文
共 38 条
[1]  
ADIATULINA RA, 1987, PMM-J APPL MATH MEC, V51, P415, DOI DOI 10.1016/0021-8928(87)90077-3
[2]  
ANDREINI A, IN PRESS REND SEM MA
[3]  
BACCIOTTI A, 1990, B UNIONE MAT ITAL, V4B, P245
[4]   AN APPROXIMATION SCHEME FOR THE MINIMUM TIME FUNCTION [J].
BARDI, M ;
FALCONE, M .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1990, 28 (04) :950-965
[5]  
BARDI M, IN PRESS NUMERICAL S
[6]  
BARDI M, 1989, TIME OPTIMAL CONTROL
[7]  
BARDI M, IN PRESS T AM MATH S
[8]  
BARDI M, 1989, LECTURE NOTES CONTRO, V119, P62
[9]  
BARLES G, 1988, CEREMADE8802 PREPR
[10]   VISCOSITY SOLUTIONS OF ISAACS EQUATIONS AND DIFFERENTIAL-GAMES WITH LIPSCHITZ CONTROLS [J].
BARRON, EN ;
EVANS, LC ;
JENSEN, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1984, 53 (02) :213-233