EXISTENCE AND UNIQUENESS OF A GLOBAL SMOOTH SOLUTION FOR THE VLASOV-POISSON-FOKKER-PLANCK SYSTEM IN 3 DIMENSIONS

被引:123
作者
BOUCHUT, F
机构
[1] PMMS, CNRS, 45071 Orleans Cedex 2
关键词
D O I
10.1006/jfan.1993.1011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Studying precisely the regularity of the force field created by the solution of the linear Vlasov-Fokker-Planck equation, we prove existence and uniqueness of a smooth solution to the Vlasov-Poisson-Fokker-Planck system in three dimensions. The attractive and repulsive cases are treated. The method involves an analysis of the effect of the Fokker-Planck kernel, without any force field, on non-linear expressions coming from the Vlasov term. © 1993 by Academic Press. Inc.
引用
收藏
页码:239 / 258
页数:20
相关论文
共 15 条
[1]  
BOUCHUT F, 1991, CR ACAD SCI I-MATH, V313, P243
[2]  
BOUCHUT F, UNPUB SMOOTHING EFFE
[3]  
DEGOND P, 1986, ANN SCI ECOLE NORM S, V19, P519
[4]  
DIPERNA R, 1988, CR ACAD SCI I-MATH, V307, P655
[5]  
DIPERNA RJ, 1988, SEM MATEMATICO TORIN, V46, P259
[6]   STATIONARY SOLUTIONS OF THE VLASOV-FOKKER-PLANCK EQUATION [J].
DRESSLER, K .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1987, 9 (02) :169-176
[7]   STEADY-STATES IN PLASMA PHYSICS - THE VLASOV-FOKKER-PLANCK EQUATION [J].
DRESSLER, K .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1990, 12 (06) :471-487
[8]   HYPOELLIPTIC 2ND ORDER DIFFERENTIAL EQUATIONS [J].
HORMANDE.L .
ACTA MATHEMATICA UPPSALA, 1967, 119 (3-4) :147-&
[9]  
HORST E, 1987, PDE BANACH CTR PUBLI, V19, P143
[10]   PROPAGATION OF MOMENTS AND REGULARITY FOR THE 3-DIMENSIONAL VLASOV-POISSON SYSTEM [J].
LIONS, PL ;
PERTHAME, B .
INVENTIONES MATHEMATICAE, 1991, 105 (02) :415-430