ON THE DESIGN OF STRICTLY POSITIVE REAL TRANSFER-FUNCTIONS

被引:40
作者
MARQUEZ, HJ
DAMAREN, CJ
机构
[1] Department of Engineering, Royal Roads Military College, FMO Victoria, British Columbia
来源
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS | 1995年 / 42卷 / 04期
关键词
D O I
10.1109/81.382475
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The synthesis of strictly positive real transfer functions is considered, For a given Hurwitz polynomial of degree n comprising the denominator polynomial, necessary and sufficient conditions on the numerator which render a rational function strictly positive real are given. In the case where the function is strictly proper, a parameterization of the polynomial numerator by n real numbers satisfying a simple constraint is provided. The approach taken employs factorization of a polynomial into its even and odd parts. The relationship of the results to those provided by the Kalman-Yakubovich Lemma is given and the present method shown to have certain advantages.
引用
收藏
页码:214 / 218
页数:5
相关论文
共 14 条
[1]  
Astrom K.J., 2013, ADAPTIVE CONTROL
[2]   STABILITY OF LARGE SPACE STRUCTURE CONTROL-SYSTEMS USING POSITIVITY CONCEPTS [J].
BENHABIB, RJ ;
IWENS, RP ;
JACKSON, RL .
JOURNAL OF GUIDANCE AND CONTROL, 1981, 4 (05) :487-494
[3]  
DESOER CA, 1980, IEEE T AUTOMAT CONTR, V25, P399, DOI 10.1109/TAC.1980.1102374
[4]  
Desoer CA., 1975, FEEDBACK SYSTEMS INP
[5]  
Gantmacher, 1959, THEORY MATRICES, P125
[6]  
GILBERT J, 1992, ELEMENTS MODERN ALGE
[7]  
Guillemin E. A., 1957, SYNTHESIS PASSIVE NE
[8]   FREQUENCY-DOMAIN CONDITIONS FOR STRICTLY POSITIVE REAL FUNCTIONS [J].
IOANNOU, P ;
TAO, G .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1987, 32 (01) :53-54
[9]  
Jury EI, 1974, INNERS STABILITY DYN
[10]  
MARQUEZ HJ, UNPUB COMMENTS STRIC