THE GRAM-SOMMERVILLE AND GAUSS-BONNET THEOREMS AND COMBINATORIAL GEOMETRIC MEASURES FOR NONCOMPACT POLYHEDRA

被引:15
作者
CHEN, BF [1 ]
机构
[1] SUNY BUFFALO,DEPT MATH,BUFFALO,NY 14214
关键词
D O I
10.1016/0001-8708(92)90019-H
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some non-numerical curvature functions are introduced for noncompact and unbounded polyhedcra in an affine space over an ordered field in this paper. With these functions the generalized Gram-Sommerville and Gauss-Bonnet theorems are obtained and are found to be dual. The Euler characteristic can be interpreted as a zero dimensional curvature measure on the space of polyhedra, and the higher dimensional geometric measures are similarly obtained. The usual numerical curvatures are naturally derived from the non-numerical curvature functions. © 1992.
引用
收藏
页码:269 / 291
页数:23
相关论文
共 21 条
[1]   The Gauss-Bonnet theorem for Riemannian polyhedra [J].
Allendoerfer, Carl B. ;
Weil, Andre .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1943, 53 (1-3) :101-129
[2]  
Bancho T. F., 1967, J FF ER GEOM, V1, P245, DOI [10.4310/jdg/1214428092, DOI 10.4310/JDG/1214428092]
[3]  
BANCHOFF T, 1983, DIFFERENTIAL GEOMETR, V32
[4]  
Brin IA, 1948, USPEKHI MAT NAUK, V3, P226
[5]   LIPSCHITZ-KILLING CURVATURES OF ANGULAR PARTIALLY ORDERED SETS [J].
BUDACH, L .
ADVANCES IN MATHEMATICS, 1989, 78 (02) :140-167
[6]   ON THE CURVATURE OF PIECEWISE FLAT SPACES [J].
CHEEGER, J ;
MULLER, W ;
SCHRADER, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 92 (03) :405-454
[7]   KINEMATIC AND TUBE FORMULAS FOR PIECEWISE LINEAR-SPACES [J].
CHEEGER, J ;
MULLER, W ;
SCHRADER, R .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1986, 35 (04) :737-754
[8]  
CHEN BF, 1991, THESIS SUNY BUFFALO
[9]  
Federer H., 1969, GRUNDLEHREN MATH WIS
[10]  
Federer H., 1959, T AM MATH SOC, V93, P418, DOI [10.1090/S0002-9947-1959-0110078-1, DOI 10.1090/S0002-9947-1959-0110078-1]