NON-LINEAR INITIAL-VALUE PROBLEM ARISING FROM KINETIC-THEORY OF VEHICULAR TRAFFIC

被引:4
作者
BARONE, E [1 ]
BELLENIMORANTE, A [1 ]
机构
[1] FAC INGN FIRENZE, INST MATEMAT APPL, FIRENZE, ITALY
来源
TRANSPORT THEORY AND STATISTICAL PHYSICS | 1978年 / 7卷 / 1-2期
关键词
D O I
10.1080/00411457808204618
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a nonlinear initial-value problem arising from a Boltzmann-like model of vehicular traffic on highways. First, we show that such a problem has a unique strict solution u = u(t) that belongs to a suitable Banach space x0, provided that t ∊ [0, t] with t suitably chosen. Then, we prove that u(t) belongs to the closed positive cone X+0, if u0 = u(0) belongs to a suitable subset of X0+. Finally, we evaluate a continuous nonnegative real function y(t), such that ||u(t)|| ≤y(t) at any t ∊[0, t]. © 1978 Taylor & Francis Group, LLC. All rights reserved.
引用
收藏
页码:61 / 79
页数:19
相关论文
共 12 条
[1]  
Barbu V., 1976, NONLINEAR SEMIGROUPS
[2]  
BARONE E, 1977, RIC MAT, V26, P41
[3]   NEUTRON-TRANSPORT WITH TEMPERATURE FEEDBACK [J].
BELLENIMORANTE, A .
NUCLEAR SCIENCE AND ENGINEERING, 1976, 59 (01) :56-58
[4]   NON-LINEAR EQUATIONS OF EVOLUTION [J].
BROWDER, FE .
ANNALS OF MATHEMATICS, 1964, 80 (03) :485-&
[5]  
Butzer P.L., 1967, SEMIGROUPS OPERATORS
[6]  
Ferziger J. H., 1972, MATH THEORY TRANSPOR
[7]  
Kato T., 1975, SPECTRAL THEORY DIFF, V448, P25, DOI [10.1007/BFb0067080, DOI 10.1007/BFB0067080]
[8]  
Kato T, 1964, P S APPL MATH, V17, P50
[9]  
Kato T., 1966, PERTURBATION THEORY, V132, P396
[10]   BOLTZMANN-LIKE TREATMENTS FOR TRAFFIC FLOW - CRITICAL REVIEW OF BASIC MODEL AND AN ALTERNATIVE PROPOSAL FOR DILUTE TRAFFIC ANALYSIS [J].
PAVERIFONTANA, SL .
TRANSPORTATION RESEARCH, 1975, 9 (04) :225-235