NONLINEAR SURFACE ELASTIC-WAVES IN A DISCRETE MODEL

被引:11
作者
KIVSHAR, YS
SYRKIN, ES
机构
[1] UNIV COMPLUTENSE,INST CULTURA & CIENCIA SOVIET,DEPT INVEST CIENT & TECN,E-28023 MADRID,SPAIN
[2] KHARKOV LOW TEMP PHYS & ENGN INST,KHARKOV 310164,UKRAINE,USSR
关键词
D O I
10.1016/0375-9601(91)90929-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The influence of nonlinearity on surface elastic waves is studied in the framework of a simple lattice model for cubic crystals including nonlinear interactions between the first, second, and third neighbors. It is shown that in the model nonlinear effects are of the same order as the dispersion ones and they may change the penetration length of surface waves. In particular, nonlinearity may support surface waves not existing in linear theory. Analytical results are obtained in two limit cases: deeply penetrating nonlinear surface waves and nonlinear waves strongly localized at the crystal surface. It is predicted that surface waves may be totally localized at the surface layer when the nonlinearity is of a certain critical value.
引用
收藏
页码:155 / 162
页数:8
相关论文
共 22 条
  • [1] A NEW SURFACE WAVE IN PIEZOELECTRIC MATERIALS
    BLEUSTEIN, JL
    [J]. APPLIED PHYSICS LETTERS, 1968, 13 (12) : 412 - +
  • [2] SURFACE ELASTIC WAVES IN CUBIC CRYSTALS
    GAZIS, DC
    HERMAN, R
    WALLIS, RF
    [J]. PHYSICAL REVIEW, 1960, 119 (02): : 533 - 544
  • [3] NONLINEAR SURFACE ELASTIC MODES IN CRYSTALS
    GORENTSVEIG, VI
    KIVSHAR, YS
    KOSEVICH, AM
    SYRKIN, ES
    [J]. PHYSICS LETTERS A, 1990, 144 (8-9) : 479 - 486
  • [4] GORENTSVEIG VI, 1990, FIZ NIZK TEMP+, V16, P1472
  • [5] GULYAEV YV, 1969, JETP LETT, V9, P63
  • [6] HADOUAJ H, 1989, CR ACAD SCI II, V309, P1877
  • [7] SOLITONS IN A NONLINEAR ELASTIC MEDIUM
    KIVSHAR, YS
    [J]. PHYSICAL REVIEW B, 1991, 43 (04): : 3493 - 3499
  • [8] KIVSHAR YS, UNPUB
  • [9] KOSEVICH YA, 1990, PHYS LETT A, V146, P525
  • [10] LIFSHITS IM, 1948, ZH EKSP TEOR FIZ+, V18, P1012