ORGANIC-MATTER AVAILABLE FOR DENITRIFICATION IN DIFFERENT SOIL FRACTIONS - EFFECT OF FREEZE THAW CYCLES AND STRAW DISPOSAL

被引:168
作者
CHRISTENSEN, S [1 ]
CHRISTENSEN, BT [1 ]
机构
[1] ASKOV EXPTL STN,DK-6600 VEJEN,DENMARK
来源
JOURNAL OF SOIL SCIENCE | 1991年 / 42卷 / 04期
关键词
D O I
10.1111/j.1365-2389.1991.tb00110.x
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
The 0 to 20-cm surface layer of a sandy loam soil was sampled in early autumn from plots where straw had either been removed or incorporated annually for 22 years. Denitrification in whole soils, 1-2-mm wet-stable aggregates, clay and silt size fractions was determined by acetylene blocking during anaerobic incubation with excess nitrate. Thus available organic matter was the limiting factor. Samples were exposed to one or two freeze/thaw cycles, or used unfrozen. K2SO4-extractable carbon (C) was determined before and after CHCl3 fumigation. Freeze/thaw increased denitrification in whole soils and in aggregates. In aggregates and in whole soil without straw the increase in denitrification was similar following two freeze/thaw cycles, and well above the amount that could be fed by extractable soil C. In whole soils with straw addition, an extra denitrification increase occurred at first thaw only. This straw-induced denitrification surplus was matched by a decline in soil microbial biomass. For other samples and treatments, the freeze/thaw released C from additional organic matter sources. The availability of C in clay for denitrification was twice that of silt-associated C. Straw disposal generally had no effect on the bioavailability of particle-bound C. In contrast to whole soils and aggregates, the availability of organic matter in clay and silt after one freeze/thaw cycle was only half that observed from unfrozen samples. The effect of freeze/thaw on whole soils and aggregates may be to release organic matter available for denitrification by killing the microbial biomass and by disintegrating aggregates. However, the impact of freeze/thaw on completely dispersed samples such as clay and silt may be to promote the formation of granular structures (micro-aggregation) in which organic matter may become less accessible to denitrifiers.
引用
收藏
页码:637 / 647
页数:11
相关论文
共 25 条
[1]   THE INFLUENCE OF PLANT RESIDUES ON DENITRIFICATION RATES IN CONVENTIONAL AND ZERO TILLED SOILS [J].
AULAKH, MS ;
RENNIE, DA ;
PAUL, EA .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1984, 48 (04) :790-794
[2]   SOIL ORGANIC-MATTER TURNOVER IN LONG-TERM FIELD EXPERIMENTS AS REVEALED BY C-13 NATURAL ABUNDANCE [J].
BALESDENT, J ;
WAGNER, GH ;
MARIOTTI, A .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1988, 52 (01) :118-124
[3]   INFLUENCE OF SIMULATED FALL AND SPRING CONDITIONS ON SOIL SYSTEM .1. EFFECT ON SOIL MICROFLORA [J].
BIEDERBECK, VO ;
CAMPBELL, CA .
SOIL SCIENCE SOCIETY OF AMERICA PROCEEDINGS, 1971, 35 (03) :474-+
[4]   SOIL COHESION AS AFFECTED BY FREEZING, WATER-CONTENT, TIME AND TILLAGE [J].
BULLOCK, MS ;
KEMPER, WD ;
NELSON, SD .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1988, 52 (03) :770-776
[5]   NITROUS-OXIDE PRODUCTION THROUGHOUT THE YEAR FROM FERTILIZED AND MANURED MAIZE FIELDS [J].
CATES, RL ;
KEENEY, DR .
JOURNAL OF ENVIRONMENTAL QUALITY, 1987, 16 (04) :443-447
[6]  
CHRISTENSEN BT, 1987, SOIL BIOL BIOCHEM, V19, P429, DOI [10.1016/0038-0717(87)90034-4, 10.3109/00365548709021675]
[7]   CARBON AND NITROGEN IN PARTICLE-SIZE FRACTIONS-ISOLATED FROM DANISH ARABLE SOILS BY ULTRASONIC DISPERSION AND GRAVITY-SEDIMENTATION [J].
CHRISTENSEN, BT .
ACTA AGRICULTURAE SCANDINAVICA, 1985, 35 (02) :175-187
[8]   BRIEF AND VIGOROUS N2O PRODUCTION BY SOIL AT SPRING THAW [J].
CHRISTENSEN, S ;
TIEDJE, JM .
JOURNAL OF SOIL SCIENCE, 1990, 41 (01) :1-4
[9]   THE EFFECT OF FREEZE THAW ON GASEOUS NITROGEN LOSS FROM UPLAND SOILS [J].
EDWARDS, AC ;
KILLHAM, K .
SOIL USE AND MANAGEMENT, 1986, 2 (03) :86-91
[10]   AGGREGATE STRUCTURE AND CARBON, NITROGEN, AND PHOSPHORUS IN NATIVE AND CULTIVATED SOILS [J].
ELLIOTT, ET .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1986, 50 (03) :627-633