TRANSIENT AND BUSY PERIOD ANALYSIS OF THE GI/G/1 QUEUE AS A HILBERT FACTORIZATION PROBLEM

被引:6
作者
BERTSIMAS, DJ [1 ]
KEILSON, J [1 ]
NAKAZATO, D [1 ]
ZHANG, HT [1 ]
机构
[1] MIT,OPERAT RES CTR,CAMBRIDGE,MA 02139
关键词
TRANSIENT ANALYSIS; BUSY PERIOD; LINDLEY EQUATION;
D O I
10.2307/3214690
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we find the waiting time distribution in the transient domain and the busy period distribution of the GI/G/1 queue. We formulate the problem as a two-dimensional Lindley process and then transform it to a Hilbert factorization problem. We achieve the solution of the factorization problem for the GI/R/1, R/G/1 queues, where R is the class of distributions with rational Laplace transforms. We obtain simple closed-form expressions for the Laplace transforms of the waiting time distribution and the busy period distribution. Furthermore, we find closed-form formulae for the first two moments of the distributions involved.
引用
收藏
页码:873 / 885
页数:13
相关论文
共 13 条
[1]  
Asmussen S., 1989, MATH SCI, V14, P101
[2]  
BERTSIMAS D, 1989, IN PRESS QUESTA
[3]   TRANSIENT SOLUTIONS IN MARKOVIAN QUEUING SYSTEMS [J].
GRASSMANN, WK .
COMPUTERS & OPERATIONS RESEARCH, 1977, 4 (01) :47-53
[4]  
Gross D, 1985, FUNDAMENTALS QUEUING, V3rd
[5]   Markoff Chains as an Aid in the Study of Markoff Processes [J].
Jensen, Arne .
SKANDINAVISK AKTUARIETIDSKRIFT, 1953, 36 (1-2) :87-91
[6]   ON MATRIX RENEWAL FUNCTION FOR MARKOV RENEWAL PROCESSES [J].
KEILSON, J .
ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (06) :1901-&
[7]  
KEILSON J, 1962, J ROY STAT SOC B, V24, P344
[8]  
KEILSON J, 1961, B I INT STATIST, P1
[9]  
Kleinrock L., 1975, QUEUEING SYST
[10]   THE THEORY OF QUEUES WITH A SINGLE SERVER [J].
LINDLEY, DV .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1952, 48 (02) :277-289