PROBABILISTIC BOUNDS (VIA LARGE DEVIATIONS) FOR THE SOLUTIONS OF STOCHASTIC-PROGRAMMING PROBLEMS

被引:43
作者
KANIOVSKI, YM
KING, AJ
WETS, RJB
机构
[1] INT INST APPL SYST ANAL,LAXENBURG,AUSTRIA
[2] IBM CORP,THOMAS J WATSON RES CTR,DEPT MATH SCI,YORKTOWN HTS,NY 10598
[3] UNIV CALIF DAVIS,DEPT MATH,DAVIS,CA 95616
关键词
EPI-DISTANCE; LARGE DEVIATIONS; STOCHASTIC PROGRAMS; CONVERGENCE;
D O I
10.1007/BF02031707
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Several exponential bounds are derived by means of the theory of large deviations for the convergence of approximate solutions of stochastic optimization problems. The basic results show that the solutions obtained by replacing the original distribution by an empirical distribution provides an effective tool for solving stochastic programming problems.
引用
收藏
页码:189 / 208
页数:20
相关论文
共 29 条
[1]  
[Anonymous], 1989, LARGE DEVIATIONS
[2]   QUANTITATIVE STABILITY OF VARIATIONAL SYSTEMS .1. THE EPIGRAPHICAL DISTANCE [J].
ATTOUCH, H ;
WETS, RJB .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 328 (02) :695-729
[3]   THE TOPOLOGY OF THE RHO-HAUSDORFF DISTANCE [J].
ATTOUCH, H ;
LUCCHETTI, R ;
WETS, RJB .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1991, 160 :303-320
[4]  
ATTOUCH H, 1991, 1990 SEM AN CONV MON
[5]  
ATTOUCH H, 1992, IIASA889 WORK PAP
[7]  
Billingsley P, 1968, CONVERGENCE PROBABIL
[8]  
Dunford N., 1957, LINEAR OPERATORS 1
[9]   ASYMPTOTIC-BEHAVIOR OF STATISTICAL ESTIMATORS AND OF OPTIMAL-SOLUTIONS OF STOCHASTIC OPTIMIZATION PROBLEMS [J].
DUPACOVA, J ;
WETS, R .
ANNALS OF STATISTICS, 1988, 16 (04) :1517-1549
[10]  
Dupacova J., 1987, Optimization, V18, P507, DOI 10.1080/02331938708843266