CLASSICAL DEFORMATIONS, POISSON-LIE CONTRACTIONS, AND QUANTIZATION OF DUAL LIE BIALGEBRAS

被引:23
作者
BALLESTEROS, A [1 ]
HERRANZ, FJ [1 ]
DELOLMO, MA [1 ]
SANTANDER, M [1 ]
机构
[1] UNIV VALLADOLID, DEPT FIS TEOR, E-47011 VALLADOLID, SPAIN
关键词
D O I
10.1063/1.531331
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A Poisson-Hopf algebra of smooth functions is simultaneously constructed on the two dimensional Euclidean, Poincaré, and Heisenberg groups by using a classical r-matrix which is invariant under contraction. The quantization for this algebra of functions is developed, and its dual Hopf algebra is also computed. Contractions on these quantum groups are studied. It is shown that, within this setting, classical deformations are transformed into quantum ones by Hopf algebra duality and the quantum Heisenberg algebra is derived by means of a (dual) Poisson-Lie quanti-zation that deforms the standard Moyal-Weyl *ℏ-product. © 1995 American Institute of Physics.
引用
收藏
页码:631 / 640
页数:10
相关论文
共 21 条
[1]   A UNIVERSAL NON-QUASI-TRIANGULAR QUANTIZATION OF THE HEISENBERG-GROUP [J].
BALLESTEROS, A ;
CELEGHINI, E ;
HERRANZ, FJ ;
DELOLMO, MA ;
SANTANDER, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (11) :L369-L373
[2]   QUANTUM STRUCTURE OF THE MOTION GROUPS OF THE 2-DIMENSIONAL CAYLEY-KLEIN GEOMETRIES [J].
BALLESTEROS, A ;
HERRANZ, FJ ;
DELOLMO, MA ;
SANTANDER, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (21) :5801-5823
[3]   AN R-MATRIX APPROACH TO THE QUANTIZATION OF THE EUCLIDEAN GROUP E(2) [J].
BALLESTEROS, A ;
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (24) :7495-7501
[4]  
BALLESTEROS A, IN PRESS P INT S NON
[5]  
BALLESTEROS A, IN PRESS 30 P KARP W
[6]   INHOMOGENEOUS QUANTUM GROUPS AS SYMMETRIES OF PHONONS [J].
BONECHI, F ;
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
PHYSICAL REVIEW LETTERS, 1992, 68 (25) :3718-3720
[7]  
BONECHI F, 1993, DEFORMATION QUANTIZA
[8]   THE QUANTUM HEISENBERG-GROUP H(1)Q [J].
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (05) :1155-1158
[9]  
CELEGHINI E, 1992, LECT NOTES MATH, V1510, P221
[10]   THE 3-DIMENSIONAL EUCLIDEAN QUANTUM GROUP E(3)Q AND ITS R-MATRIX [J].
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (05) :1159-1165