LEARNING AND GENERALIZATION IN A LINEAR PERCEPTRON STOCHASTICALLY TRAINED WITH NOISY DATA

被引:12
作者
DUNMUR, AP
WALLACE, DJ
机构
[1] Dept. of Phys., Edinburgh Univ.
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1993年 / 26卷 / 21期
关键词
D O I
10.1088/0305-4470/26/21/016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A linear perceptron is stochastically trained on a corrupted training data set; this enables the effect of noise on the data to be studied. The average properties of the network are calculated using the Gardner method following Seung et al. A weight decay tem is added to the training energy and the effect on generalization studied and compared with previously known results. A prescription for setting the optimal weight decay parameter at finite temperature is presented. The results also suggest an initial temperature for an annealing schedule.
引用
收藏
页码:5767 / 5779
页数:13
相关论文
共 14 条
  • [1] [Anonymous], 1991, INTRO THEORY NEURAL, DOI DOI 10.1201/9780429499661
  • [2] BOS S, 1992, PHYS REV E, V47, P1384
  • [3] DEMENEZES FS, 1993, UNPUB LEARNING GENER
  • [4] THEORY OF SPIN GLASSES
    EDWARDS, SF
    ANDERSON, PW
    [J]. JOURNAL OF PHYSICS F-METAL PHYSICS, 1975, 5 (05): : 965 - 974
  • [5] OPTIMAL STORAGE PROPERTIES OF NEURAL NETWORK MODELS
    GARDNER, E
    DERRIDA, B
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (01): : 271 - 284
  • [6] THE SPACE OF INTERACTIONS IN NEURAL NETWORK MODELS
    GARDNER, E
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (01): : 257 - 270
  • [7] GARDNER E, 1987, NEURAL COMPUT, P251
  • [8] GYORGYI G, 1990, STATISTICAL THEORY L, P3
  • [9] PHASE-TRANSITIONS IN SIMPLE LEARNING
    HERTZ, JA
    KROGH, A
    THORBERGSSON, GI
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (12): : 2133 - 2150
  • [10] GENERALIZATION IN A LINEAR PERCEPTRON IN THE PRESENCE OF NOISE
    KROGH, A
    HERTZ, JA
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (05): : 1135 - 1147