OPTIMALITY CONDITIONS AND DUALITY-THEORY FOR MINIMIZING SUMS OF THE LARGEST EIGENVALUES OF SYMMETRICAL MATRICES

被引:125
作者
OVERTON, ML [1 ]
WOMERSLEY, RS [1 ]
机构
[1] UNIV NEW S WALES, SCH MATH, KENSINGTON, NSW 2033, AUSTRALIA
关键词
NONSMOOTH OPTIMIZATION; CONVEX COMPOSITE OPTIMIZATION; GENERALIZED GRADIENT; MAXIMUM EIGENVALUE; SUM OF EIGENVALUES;
D O I
10.1007/BF01585173
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The sum of the largest eigenvalues of a symmetric matrix is a nonsmooth convex function of the matrix elements. Max characterizations for this sum are established, giving a concise characterization of the subdifferential in terms of a dual matrix. This leads to a very useful characterization of the generalized gradient of the following convex composite function: the sum of the largest eigenvalues of a smooth symmetric matrix-valued function of a set of real parameters. The dual matrix provides the information required to either verify first-order optimality conditions at a point or to generate a descent direction for the eigenvalue sum from that point, splitting a multiple eigenvalue if necessary. Connections with the classical literature on sums of eigenvalues and eigenvalue perturbation theory are discussed. Sums of the largest eigenvalues in the absolute value sense are also addressed.
引用
收藏
页码:321 / 357
页数:37
相关论文
共 29 条
[1]  
ALIZADEH F., 1991, THESIS U MINNESOTA M
[2]  
Baumgartel H, 1985, ANAL PERTURBATION TH
[3]  
Bellman R., 1970, INTRO MATRIX ANAL
[4]  
BELLMAN R, 1963, CONVEXITY, P1
[5]  
BURKE JV, 1993, IN PRESS NONSMOOTH O
[6]  
Clarke F.H., 1983, OPTIMIZATION NONSMOO
[7]   LINEAR-PROGRAMMING WITH MATRIX VARIABLES [J].
CRAVEN, BD ;
MOND, B .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1981, 38 (JUN) :73-80
[8]  
Cullum J., 1975, MATH PROGRAMMING STU, P35
[10]   SOME CONVEXITY THEOREMS FOR MATRICES [J].
FILLMORE, PA ;
WILLIAMS, JP .
GLASGOW MATHEMATICAL JOURNAL, 1971, 12 (SEP) :110-&