TODA THEORIES, W-ALGEBRAS, AND MINIMAL MODELS

被引:32
作者
MANSFIELD, P [1 ]
SPENCE, B [1 ]
机构
[1] UNIV LONDON,QUEEN MARY & WESTFIELD COLL,DEPT PHYS,LONDON E1 4NS,ENGLAND
基金
美国国家科学基金会;
关键词
D O I
10.1016/0550-3213(91)90565-F
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We discuss the classical W-algebra symmetries of Toda field theories in terms of the pseudo-differential Lax operator associated with the Toda Lax pair. We then show how the W-algebra transformations can be understood as the non-abelian gauge transformations which preserve the form of the Lax pair. This provides a new understanding of the W-algebras, and we discuss their closure and co-cycle structure using this approach. The quantum Lax operator is investigated, and we show that this operator, which generates the quantum W-algebra currents, is conserved in the conformally extended Toda theories. The W-algebra minimal model primary fields are shown to arise naturally in these theories, leading to the conjecture that the conformally extended Toda theories provide a lagrangian formulation of the W-algebra minimal models.
引用
收藏
页码:294 / 328
页数:35
相关论文
共 74 条
[1]  
ADLER M, 1979, INVENT MATH, V50, P219
[2]  
ALEKSEEV A, LOMI E1688 LEN PREPR
[3]  
AWADA M, 902 GAIN PREPR
[4]  
AWADA M, 904 GAIN PREPR
[5]   EXTENDED CONFORMAL ALGEBRA AND THE YANG-BAXTER EQUATION [J].
BABELON, O .
PHYSICS LETTERS B, 1988, 215 (03) :523-529
[6]   EXTENSIONS OF THE VIRASORO ALGEBRA CONSTRUCTED FROM KAC-MOODY ALGEBRAS USING HIGHER-ORDER CASIMIR INVARIANTS [J].
BAIS, FA ;
BOUWKNEGT, P ;
SURRIDGE, M ;
SCHOUTENS, K .
NUCLEAR PHYSICS B, 1988, 304 (02) :348-370
[7]   COSET CONSTRUCTION FOR EXTENDED VIRASORO ALGEBRAS [J].
BAIS, FA ;
BOUWKNEGT, P ;
SURRIDGE, M ;
SCHOUTENS, K .
NUCLEAR PHYSICS B, 1988, 304 (02) :371-391
[8]   THE HAMILTONIAN-STRUCTURE OF THE SPIN-4 OPERATOR ALGEBRA [J].
BAKAS, I .
PHYSICS LETTERS B, 1988, 213 (03) :313-318
[9]   HAMILTONIAN REDUCTION AND CONFORMAL-SYMMETRIES IN 2-DIMENSIONS [J].
BAKAS, I .
PHYSICS LETTERS B, 1989, 219 (2-3) :283-290
[10]   HIGHER SPIN FIELDS AND THE GELFAND-DICKEY ALGEBRA [J].
BAKAS, I .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 123 (04) :627-639