HEAT KERNEL AND DISCRETIZATION OF RIEMANN MANIFOLDS

被引:23
作者
COULHON, T [1 ]
机构
[1] UNIV PARIS 06,F-75252 PARIS 05,FRANCE
关键词
D O I
10.1007/BF02808072
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
One considers a bounded geometry non-compact Riemannian manifold, and the graph obtained by discretizing this manifold. One shows that the uniform decay for large time of the heat kernel on the manifold and the decay of the standard random walk on the graph are the same, in the polynomial scale. As a consequence, such a large time behaviour of the heat kernel is invariant under rough isometries.
引用
收藏
页码:289 / 300
页数:12
相关论文
共 20 条
[1]   THE FUNDAMENTAL GROUP AND THE SPECTRUM OF THE LAPLACIAN [J].
BROOKS, R .
COMMENTARII MATHEMATICI HELVETICI, 1981, 56 (04) :581-598
[2]   MODIFIED ISOPERIMETRIC CONSTANTS, AND LARGE TIME HEAT DIFFUSION IN RIEMANNIAN-MANIFOLDS [J].
CHAVEL, I ;
FELDMAN, EA .
DUKE MATHEMATICAL JOURNAL, 1991, 64 (03) :473-499
[3]  
CHAVEL I, 1991, P LOND MATH SOC, V3, P427
[4]  
COULHON T, 1990, ANN I H POINCARE-PR, V26, P419
[5]  
COULHON T, 1990, CR ACAD SCI I-MATH, V310, P627
[6]  
COULHON T, 1990, B SCI MATH, V114, P485
[7]  
COULHON T, 1991, LECT NOTES PURE APPL, V135, P93
[8]  
CROKE CB, 1980, ANN SCI ECOLE NORM S, V13, P419
[9]  
John W., 1968, J DIFFER GEOM, V2, P1