ON A 4TH ORDER ACCURATE IMPLICIT FINITE-DIFFERENCE SCHEME FOR HYPERBOLIC CONSERVATION-LAWS .1. NONSTIFF STRONGLY DYNAMIC PROBLEMS

被引:16
作者
HARTEN, A
TALEZER, H
机构
关键词
D O I
10.2307/2007647
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:353 / 373
页数:21
相关论文
共 17 条
[1]   DIFFERENCE SCHEMES WITH 4TH ORDER ACCURACY FOR HYPERBOLIC EQUATIONS [J].
ABARBANEL, S ;
GOTTLIEB, D ;
TURKEL, E .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1975, 29 (02) :329-351
[2]   IMPLICIT FINITE-DIFFERENCE ALGORITHM FOR HYPERBOLIC SYSTEMS IN CONSERVATION-LAW FORM [J].
BEAM, RM ;
WARMING, RF .
JOURNAL OF COMPUTATIONAL PHYSICS, 1976, 22 (01) :87-110
[3]  
DAVIS P, 1974, METHODS NUMERICAL IN
[4]   ALTERNATING DIRECTION IMPLICIT METHOD FOR SOLVING SHALLOW WATER EQUATIONS [J].
GUSTAFSSON, B .
JOURNAL OF COMPUTATIONAL PHYSICS, 1971, 7 (02) :239-+
[5]  
HARTEN A, 1978, MATH COMPUT, V32, P363, DOI 10.2307/2006149
[6]   FINITE-DIFFERENCE APPROXIMATIONS AND ENTROPY CONDITIONS FOR SHOCKS [J].
HARTEN, A ;
HYMAN, JM ;
LAX, PD .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1976, 29 (03) :297-322
[7]   SELF-ADJUSTING HYBRID SCHEMES FOR SHOCK COMPUTATIONS [J].
HARTEN, A ;
ZWAS, G .
JOURNAL OF COMPUTATIONAL PHYSICS, 1972, 9 (03) :568-&
[8]  
HARTEN A, 1979, ICASE791 NASA LANGL
[9]  
HIRSH RS, 1976, J COMPUT PHYS, V16, P304
[10]  
Isaacson E., 1966, ANAL NUMERICAL METHO