SCALING THEORY OF DEPINNING IN THE SNEPPEN MODEL

被引:21
作者
MASLOV, S
PACZUSKI, M
机构
[1] SUNY STONY BROOK,DEPT PHYS,STONY BROOK,NY 11790
[2] ISAAC NEWTON INST MATH SCI,CAMBRIDGE CB4 0EH,ENGLAND
来源
PHYSICAL REVIEW E | 1994年 / 50卷 / 02期
关键词
D O I
10.1103/PhysRevE.50.R643
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We develop a scaling theory for the critical depinning behavior of the Sneppen interface model [Phys. Rev. Lett. 69, 3539 (1992)]. This theory is based on a ''gap'' equation that describes the self-organization process to a critical state of the depinning transition. All of the critical exponents can be expressed in terms of two independent exponents, nu(parallel-t0)(d) and nu(perpendicular-to)(d), characterizing the divergence of the parallel and perpendicular correlation lengths as the interface approaches its dynamical attractor.
引用
收藏
页码:R643 / R646
页数:4
相关论文
共 25 条
[1]   PUNCTUATED EQUILIBRIUM AND CRITICALITY IN A SIMPLE-MODEL OF EVOLUTION [J].
BAK, P ;
SNEPPEN, K .
PHYSICAL REVIEW LETTERS, 1993, 71 (24) :4083-4086
[2]   SELF-ORGANIZED CRITICALITY [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW A, 1988, 38 (01) :364-374
[3]   SELF-ORGANIZED CRITICALITY - AN EXPLANATION OF 1/F NOISE [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW LETTERS, 1987, 59 (04) :381-384
[4]   INTERFACE MOTION AND NONEQUILIBRIUM PROPERTIES OF THE RANDOM-FIELD ISING-MODEL [J].
BRUINSMA, R ;
AEPPLI, G .
PHYSICAL REVIEW LETTERS, 1984, 52 (17) :1547-1550
[5]   ANOMALOUS INTERFACE ROUGHENING IN POROUS-MEDIA - EXPERIMENT AND MODEL [J].
BULDYREV, SV ;
BARABASI, AL ;
CASERTA, F ;
HAVLIN, S ;
STANLEY, HE ;
VICSEK, T .
PHYSICAL REVIEW A, 1992, 45 (12) :R8313-R8316
[6]  
DEUTSCHER G, 1983, ANN ISRAEL PHYSICAL, V5
[7]   ANALYSIS OF EXTENDED SERIES FOR BOND PERCOLATION ON THE DIRECTED SQUARE LATTICE [J].
ESSAM, JW ;
DEBELL, K ;
ADLER, J ;
BHATTI, FM .
PHYSICAL REVIEW B, 1986, 33 (03) :1982-1986
[8]   INTERMITTENT DYNAMICS AND SELF-ORGANIZED DEPINNING IN PROPAGATING FRONTS [J].
FALK, J ;
JENSEN, MH ;
SNEPPEN, K .
PHYSICAL REVIEW E, 1994, 49 (04) :2804-2808
[9]  
HALPINHEALY T, UNPUBLISHED
[10]   PERCOLATIVE, SELF-AFFINE, AND FACETED DOMAIN GROWTH IN RANDOM 3-DIMENSIONAL MAGNETS [J].
JI, H ;
ROBBINS, MO .
PHYSICAL REVIEW B, 1992, 46 (22) :14519-14527