DETERMINATION OF FREE-ENERGIES OF AN OSCILLATOR WITH MIXED QUARTIC AND SEXTIC ANHARMONICITIES

被引:18
作者
SRIVASTAVA, S [1 ]
VISHWAMITTAR [1 ]
机构
[1] PUNJAB UNIV, DEPT PHYS, CHANDIGARH 160014, INDIA
来源
PHYSICAL REVIEW A | 1991年 / 44卷 / 12期
关键词
D O I
10.1103/PhysRevA.44.8006
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The free energies for the oscillators with quartic, sextic, and mixed quartic-sextic anharmonicities have been calculated over a wide range of anharmocity parameter and of temperature employing the approximation methods put forward by Buttner and Flytzanis [Phys. Rev. A 36, 3443 (1987)] and by Feynman and Kleinert [Phys. Rev. A 34, 5080 (1986)]. A comparison of these values with the exact ones shows that the prescription given by Feynman and Kleinert is far superior, and that it produces quite accurate results for the potentials and temperatures considered here. The success of the Buttner-Flytzanis technique at 0 K and its failure at the intermediate as well as the high temperatures have also been analyzed.
引用
收藏
页码:8006 / 8011
页数:6
相关论文
共 36 条
[1]   GENERAL ANHARMONIC OSCILLATORS [J].
BANERJEE, K .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 364 (1717) :265-275
[2]  
BOHMANN J, 1983, Z NATURFORSCH A, V38, P167
[3]   REALIZATION OF A 2-PHOTON MASER OSCILLATOR [J].
BRUNE, M ;
RAIMOND, JM ;
GOY, P ;
DAVIDOVICH, L ;
HAROCHE, S .
PHYSICAL REVIEW LETTERS, 1987, 59 (17) :1899-1902
[4]   EFFECTIVE FREE-ENERGIES [J].
BUTTNER, H ;
FLYTZANIS, N .
PHYSICAL REVIEW A, 1987, 36 (07) :3443-3445
[5]   HILL DETERMINANT METHOD WITH A VARIATIONAL PARAMETER [J].
CHAUDHURI, RN ;
MONDAL, M .
PHYSICAL REVIEW A, 1989, 40 (10) :6080-6083
[6]   THERMODYNAMIC PROPERTIES OF A QUANTUM CHAIN WITH NEAREST-NEIGHBOR ANHARMONIC INTERACTIONS [J].
CUCCOLI, A ;
TOGNETTI, V ;
VAIA, R .
PHYSICAL REVIEW B, 1990, 41 (13) :9588-9591
[7]  
de Carvalho C. A. Arago, 1977, NUCL PHYS B, V119, P401, DOI DOI 10.1016/0550-3213(77)90003-7
[8]  
Feynman R., 1965, QUANTUM MECH PATH IN
[9]   EFFECTIVE CLASSICAL PARTITION-FUNCTIONS [J].
FEYNMAN, RP ;
KLEINERT, H .
PHYSICAL REVIEW A, 1986, 34 (06) :5080-5084
[10]  
FEYNMAN RP, 1972, STATISTICAL MECHANIC