DYNAMICAL ASPECTS OF SPIN CHAINS AT INFINITE TEMPERATURE FOR DIFFERENT SPIN QUANTUM NUMBERS

被引:22
作者
BOHM, M
LESCHKE, H
机构
[1] Institut für Theoretische Physik, Universität Erlangen-Nürnberg, D-91058 Erlangen
来源
PHYSICA A | 1993年 / 199卷 / 01期
关键词
D O I
10.1016/0378-4371(93)90101-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For infinite temperature we exactly calculate the coefficients of the short-time expansion of the spin-pair correlations in one-dimensional spin models. For spin quantum numbers s = 1 we present the coefficients up to order t18 and t22, for classical spins up to order t16 and t18 for the isotropic Heisenberg chain and the isotropic XY-chain, respectively. These coefficients are used together with recently determined ones for s = 1/2 to compute bounds on the autocorrelation functions, to approximate the associated spectral densities and to bound the spatial variances of pair correlations. The results are compared with those obtained from simulation data of Gerling and Landau (Phys. Rev. B 42 (1990) 8214) for classical spin chains. Over the available time region, we find a rather smooth dependence of the dynamics on the spin quantum number and see some evidence for spin diffusion.
引用
收藏
页码:116 / 136
页数:21
相关论文
共 38 条
[1]   DYNAMIC SPIN-PAIR CORRELATIONS IN A HEISENBERG CHAIN AT INFINITE TEMPERATURE BASED ON AN EXTENDED SHORT-TIME EXPANSION [J].
BOHM, M ;
LESCHKE, H .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (05) :1043-1053
[2]  
BOHM M, UNPUB PHYS REV B
[3]  
BOHM RW, 1993, PHYS REV LETT, V70, P248
[4]  
BONFIM OFD, 1993, PHYS REV LETT, V70, P249
[5]   BREAKDOWN OF HYDRODYNAMICS IN THE CLASSICAL 1D HEISENBERG-MODEL [J].
BONFIM, OFD ;
REITER, G .
PHYSICAL REVIEW LETTERS, 1992, 69 (02) :367-370
[6]   EXACT RESULTS FOR DYNAMICS OF ONE-DIMENSIONAL SPIN SYSTEMS [J].
BRANDT, U ;
JACOBY, K .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1976, 25 (02) :181-187
[7]   HIGH-TEMPERATURE DYNAMICS OF THE ANISOTROPIC HEISENBERG CHAIN STUDIED BY MOMENT METHODS [J].
BRANDT, U ;
STOLZE, J .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1986, 64 (03) :327-339
[8]   AUTOCORRELATION FUNCTION OF X-COMPONENT OF MAGNETIZATION IN ONE-DIMENSIONAL XY-MODEL [J].
CAPEL, HW ;
PERK, JHH .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1977, 87 (02) :211-242
[9]   MOMENT AND CONTINUED FRACTION EXPANSIONS OF TIME AUTOCORRELATION FUNCTIONS [J].
DUPUIS, M .
PROGRESS OF THEORETICAL PHYSICS, 1967, 37 (03) :502-&
[10]   RELAXATION FUNCTIONS, MEMORY FUNCTIONS, AND RANDOM FORCES IN THE ONE-DIMENSIONAL SPIN-1/2 XY AND TRANSVERSE ISING-MODELS [J].
FLORENCIO, J ;
LEE, MH .
PHYSICAL REVIEW B, 1987, 35 (04) :1835-1840