STRUCTURAL-ANALYSIS OF PORCINE BRAIN NITRIC-OXIDE SYNTHASE REVEALS A ROLE FOR TETRAHYDROBIOPTERIN AND L-ARGININE IN THE FORMATION OF AN SDS-RESISTANT DIMER

被引:269
作者
KLATT, P
SCHMIDT, K
LEHNER, D
GLATTER, O
BACHINGER, HP
MAYER, B
机构
[1] GRAZ UNIV,INST PHYS CHEM,A-8010 GRAZ,AUSTRIA
[2] OREGON HLTH SCI UNIV,DEPT BIOCHEM & MOLEC BIOL,PORTLAND,OR 97201
[3] SHRINERS HOSP CRIPPLED CHILDRENS,DEPT RES,PORTLAND,OR 97201
关键词
NITRIC OXIDE SYNTHASE; QUATERNARY STRUCTURE; SDS-RESISTANT DIMER; SECONDARY STRUCTURE; TETRAHYDROBIOPTERIN;
D O I
10.1002/j.1460-2075.1995.tb00038.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Nitric oxide synthases (NOSs), which catalyze the formation of the ubiquitous biological messenger molecule nitric oxide, represent unique cytochrome P-450s, containing reductase and mono-oxygenase domains within one polypeptide and requiring tetrahydrobiopterin as cofactor. To investigate whether tetrahydrobiopterin functions as an allosteric effector of NOS, we have analyzed the effect of the pteridine on the conformation of neuronal NOS purified from porcine brain by means of circular dichroism, velocity sedimentation, dynamic light scattering and SDS-polyacrylamide gel electrophoresis. We report for the first time the secondary structure of NOS, showing that the neuronal isozyme contains 30% alpha-helix, 14% antiparallel beta-sheet, 7% parallel beta-sheet, 19% turns and 31% other structures. The secondary structure of neuronal NOS was neither modulated nor stabilized by tetrahydrobiopterin, and the pteridine did not affect the quaternary structure of the protein, which appears to be an elongated homodimer with an axial ratio of similar to 20/1 under native conditions. Low temperature SDS-polyacrylamide gel electrophoresis revealed that tetrahydrobiopterin and L-arginine synergistically convert neuronal NOS into an exceptionally stable, noncovalently linked homodimer surviving in 2% SDS and 5% 2-mercaptoethanol. Ligand-induced formation of an SDS-resistant dimer is unprecedented and suggests a novel role for tetrahydrobiopterin and L-arginine in the allosteric regulation of protein subunit interactions.
引用
收藏
页码:3687 / 3695
页数:9
相关论文
共 68 条
  • [1] NITRIC-OXIDE SYNTHASES REVEAL A ROLE FOR CALMODULIN IN CONTROLLING ELECTRON-TRANSFER
    ABUSOUD, HM
    STUEHR, DJ
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (22) : 10769 - 10772
  • [2] BAEK KJ, 1993, J BIOL CHEM, V268, P21120
  • [3] BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
  • [4] BREDT DS, 1992, J BIOL CHEM, V267, P10976
  • [5] ISOLATION OF NITRIC-OXIDE SYNTHETASE, A CALMODULIN-REQUIRING ENZYME
    BREDT, DS
    SNYDER, SH
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (02) : 682 - 685
  • [6] CLONED AND EXPRESSED NITRIC-OXIDE SYNTHASE STRUCTURALLY RESEMBLES CYTOCHROME-P-450 REDUCTASE
    BREDT, DS
    HWANG, PM
    GLATT, CE
    LOWENSTEIN, C
    REED, RR
    SNYDER, SH
    [J]. NATURE, 1991, 351 (6329) : 714 - 718
  • [7] CHARACTERISTICS OF THE NITRIC-OXIDE SYNTHASE-CATALYZED CONVERSION OF ARGININE TO N-HYDROXYARGININE, THE FIRST OXYGENATION STEP IN THE ENZYMATIC-SYNTHESIS OF NITRIC-OXIDE
    CAMPOS, KL
    GIOVANELLI, J
    KAUFMAN, S
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (04) : 1721 - 1728
  • [8] CALMODULIN IS A SUBUNIT OF NITRIC-OXIDE SYNTHASE FROM MACROPHAGES
    CHO, HJ
    XIE, QW
    CALAYCAY, J
    MUMFORD, RA
    SWIDEREK, KM
    LEE, TD
    NATHAN, C
    [J]. JOURNAL OF EXPERIMENTAL MEDICINE, 1992, 176 (02) : 599 - 604
  • [9] Chou P Y, 1978, Adv Enzymol Relat Areas Mol Biol, V47, P45
  • [10] COMPTON LA, 1987, J BIOL CHEM, V262, P13039