PERMANENT NEURONAL CELL LOSS IN THE CEREBELLUM OF RATS EXPOSED TO CONTINUOUS LOW BLOOD-ALCOHOL LEVELS DURING THE BRAIN GROWTH SPURT - A STEREOLOGICAL INVESTIGATION

被引:104
作者
NAPPER, RMA [1 ]
WEST, JR [1 ]
机构
[1] TEXAS A&M UNIV,HLTH SCI CTR,DEPT HUMAN ANAT & MED NEUROBIOL,COLLEGE STN,TX 77843
关键词
FETAL ALCOHOL SYNDROME; DEVELOPMENT; PURKINJE CELL; GRANULE CELL; STEREOLOGICAL METHODS;
D O I
10.1002/cne.903620210
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
This study demonstrates that exposure to an alcohol regimen that resulted in low, uniform blood alcohol concentrations during a period of rapid brain growth can lead to a permanent deficit in the number of Purkinje cells and granule cells in the floccular-parafloccular region of the cerebellum. Sprague-Dawley rat pups were artificially reared and were administered alcohol over postnatal days 4 through 9, a period of brain development similar to that of the human third trimester. Two groups received a daily alcohol dose of 4.5 g/kg, administered either as a 10.2% solution in two of the 12 daily feedings (10.2% group) or as a 5.1% solution in four of the 12 feedings (5.1% group). A third group received a daily dose of 6.6 g/kg administered as a 2.5% solution in every feeding (2.5% group). The condensed patterns of alcohol administration resulted in high peak blood alcohol concentrations with near total clearance while the higher daily dose (6.6 g/kg), administered continuously, resulted in low but continuous blood alcohol concentrations. Pups were allowed to grow to adulthood and killed on postnatal day 115. The total number of Purkinje cells and granule cells in the floccular-parafloccular region of the cerebellum was estimated using unbiased stereological methods. Exposure to alcohol resulted in significant deficits in the number of both Purkinje cells and granule cells at 115 days of age in all three treatment groups. Most importantly a significant deficit of Purkinje cells and granule cells was found following continuous exposure to low blood alcohol concentrations, i.e., in the 2.5% group. The total number of Purkinje cells in the 2.5% group was 2.33 +/- 0.31 x 10(4) compared with 3.18 +/- 0.30 x 10(4) in the artificially reared controls. The total number of granule cells in the 2.5% group and the controls was 1.24 +/- 0.10 x 10(7) and 1.64 +/- 0.19 x 10(7), respectively. These results support the hypothesis that exposure to a continuous, low blood alcohol concentration can result in the death of developing neurons and lead to permanent neuronal deficits. The degree of neuronal loss does not correlate with the magnitude of the peaks of blood alcohol concentration. (C) 1995 Wiley-Liss, Inc.
引用
收藏
页码:283 / 292
页数:10
相关论文
共 57 条
[1]  
ABEL EL, 1978, J PHARMACOL EXP THER, V207, P916
[2]   AUTORADIOGRAPHIC AND HISTOLOGICAL STUDIES OF POSTNATAL NEUROGENESIS .3. DATING TIME OF PRODUCTION AND ONSET OF DIFFERENTIATION OF CEREBELLAR MICRONEURONS IN RATS [J].
ALTMAN, J .
JOURNAL OF COMPARATIVE NEUROLOGY, 1969, 136 (03) :269-&
[4]   PRENATAL ETHANOL EXPOSURE PERMANENTLY REDUCES THE NUMBER OF PYRAMIDAL NEURONS IN RAT HIPPOCAMPUS [J].
BARNES, DE ;
WALKER, DW .
DEVELOPMENTAL BRAIN RESEARCH, 1981, 1 (03) :333-340
[5]   EFFECT OF ETHANOL CHRONICALLY ADMINISTERED TO PREWEANLING RATS ON CEREBELLAR DEVELOPMENT - MORPHOLOGICAL-STUDY [J].
BAUERMOFFETT, C ;
ALTMAN, J .
BRAIN RESEARCH, 1977, 119 (02) :249-268
[6]  
BERG DK, 1982, NEURONAL DEV, P297
[7]  
BOND NW, 1986, ALCOHOL BRAIN DEV, P45
[8]   ALCOHOL-INDUCED NEURONAL LOSS IN DEVELOPING RATS - INCREASED BRAIN-DAMAGE WITH BINGE EXPOSURE [J].
BONTHIUS, DJ ;
WEST, JR .
ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 1990, 14 (01) :107-118
[9]   BLOOD-ALCOHOL CONCENTRATION AND SEVERITY OF MICROENCEPHALY IN NEONATAL RATS DEPEND ON THE PATTERN OF ALCOHOL ADMINISTRATION [J].
BONTHIUS, DJ ;
GOODLETT, CR ;
WEST, JR .
ALCOHOL, 1988, 5 (03) :209-214
[10]   EARLY POSTNATAL ALCOHOL EXPOSURE ACUTELY AND PERMANENTLY REDUCES THE NUMBER OF GRANULE CELLS AND MITRAL CELLS IN THE RAT OLFACTORY-BULB - A STEREOLOGICAL STUDY [J].
BONTHIUS, DJ ;
BONTHIUS, NE ;
NAPPER, RMA ;
WEST, JR .
JOURNAL OF COMPARATIVE NEUROLOGY, 1992, 324 (04) :557-566