RECONSTRUCTION OF A SYMMETRIC MATRIX FROM THE SPECTRAL DATA

被引:26
作者
FRIEDLAND, S [1 ]
机构
[1] HEBREW UNIV JERUSALEM, INST MATH, JERUSALEM 91000, ISRAEL
关键词
D O I
10.1016/0022-247X(79)90201-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An algorithm for the reconstruction of a symmetric matrix from the spectral data is given. All cases in which the number of solutions is finite are determined. These results are applied to a certain inverse eigenvalue problem which arises in molecular spectroscopy. © 1979.
引用
收藏
页码:412 / 422
页数:11
相关论文
共 10 条
[2]  
Fan K., 1957, CAN J MATH, V9, P298
[3]   INVERSE EIGENVALUE PROBLEMS [J].
FRIEDLAND, S .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1977, 17 (01) :15-51
[4]   EXTREMAL EIGENVALUE PROBLEMS FOR CONVEX SETS OF SYMMETRIC MATRICES AND OPERATORS [J].
FRIEDLAND, S .
ISRAEL JOURNAL OF MATHEMATICS, 1973, 15 (03) :311-331
[5]  
Gantmacher F.R., 1964, THEORY MATRICES, VI
[6]  
GANTMACHER FR, THEORY MATRICES, V2
[7]  
Horn A., 1954, AM J MATH, V76, P620, DOI DOI 10.2307/2372705
[8]  
MIRSKY L, 1958, J LOND MATH SOC, V33, P14
[9]   MULTIPLICITY OF SOLUTIONS OF INVERSE SECULAR PROBLEM [J].
TOMAN, S ;
PLIVA, J .
JOURNAL OF MOLECULAR SPECTROSCOPY, 1966, 21 (04) :362-&
[10]  
[No title captured]