A NEAR-OPTIMAL INITIAL SEED VALUE SELECTION IN K-MEANS ALGORITHM USING A GENETIC ALGORITHM

被引:95
作者
BABU, GP [1 ]
MURTY, MN [1 ]
机构
[1] INDIAN INST SCI,DEPT COMP SCI & AUTOMAT,BANGALORE 560012,KARNATAKA,INDIA
关键词
CLUSTERING; SEED VALUES; OPTIMAL PARTITION; GENETIC ALGORITHMS; K-MEANS ALGORITHM;
D O I
10.1016/0167-8655(93)90058-L
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The K-means algorithm for clustering is very much dependent on the initial seed values. We use a genetic al to find a near-optimal partitioning of the given data set by selecting proper initial seed values in the K-means algorithm. Results obtained are very encouraging and in most of the cases, on data sets having well separated clusters, the proposed scheme reached a global minimum.
引用
收藏
页码:763 / 769
页数:7
相关论文
共 8 条
[1]  
ANDERBERG MR, 1973, CLUSTER ANAL APPLICA
[2]  
CHIEN Y, 1978, INTERACTIVE PATTERN
[3]  
Duda R. O., 1973, PATTERN CLASSIFICATI, V3
[4]   OPTIMIZATION OF CONTROL PARAMETERS FOR GENETIC ALGORITHMS [J].
GREFENSTETTE, JJ .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1986, 16 (01) :122-128
[5]  
Holland J., 1989, GENETIC ALGORITHMS S
[6]  
HOLLAND JH, 1975, ADAPTATION NATURAL A
[7]  
Jain K., 1988, DUBES ALGORITHMS CLU
[8]   A HYBRID CLUSTERING PROCEDURE FOR CONCENTRIC AND CHAIN-LIKE CLUSTERS [J].
MURTY, MN ;
KRISHNA, G .
INTERNATIONAL JOURNAL OF COMPUTER & INFORMATION SCIENCES, 1981, 10 (06) :397-412