COMPARISON OF THE LEAST-SQUARES CRITERION AND THE CAUCHY CRITERION IN FREQUENCY-WAVE-NUMBER INVERSION

被引:34
作者
AMUNDSEN, L [1 ]
机构
[1] CONTINENTAL SHELF & PETR TECHNOL RES INST LTD,TRONDHEIM,NORWAY
关键词
D O I
10.1190/1.1443015
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
One alternative to the least-squares inversion technique is the use of a Cauchy error criterion. We show how inversion algorithms of the Gauss-Newton type based on the least-squares method can be modified to handle the Cauchy norm. A criterion for the lower bound of the scale parameter in the Cauchy norm is given. We compare the least-squares and Cauchy error criteria by inverting synthetic data corrupted by random noise and weather noise. The data are transformed to the frequency-wavenumber domain before the inversion starts. The numerical examples show that the algorithm based on the Cauchy criterion is more robust in the presence of the noise tested here. Per iteration, the computer costs of the two algorithms are approximately the same.
引用
收藏
页码:2027 / 2035
页数:9
相关论文
共 11 条
  • [1] FREQUENCY-WAVE-NUMBER INVERSION OF ACOUSTIC DATA
    AMUNDSEN, L
    URSIN, B
    [J]. GEOPHYSICS, 1991, 56 (07) : 1027 - 1039
  • [2] FITTING OF POWER-SERIES, MEANING POLYNOMIALS, ILLUSTRATED ON BAND-SPECTROSCOPIC DATA
    BEATON, AE
    TUKEY, JW
    [J]. TECHNOMETRICS, 1974, 16 (02) : 147 - 185
  • [3] ROBUST MODELING WITH ERRATIC DATA
    CLAERBOUT, JF
    MUIR, F
    [J]. GEOPHYSICS, 1973, 38 (05) : 826 - 844
  • [4] ROBUST ELASTIC NONLINEAR WAVE-FORM INVERSION - APPLICATION TO REAL DATA
    CRASE, E
    PICA, A
    NOBLE, M
    MCDONALD, J
    TARANTOLA, A
    [J]. GEOPHYSICS, 1990, 55 (05) : 527 - 538
  • [5] ROBUST ITERATIVE INVERSION FOR THE ONE-DIMENSIONAL ACOUSTIC-WAVE EQUATION
    GERSZTENKORN, A
    BEDNAR, JB
    LINES, LR
    [J]. GEOPHYSICS, 1986, 51 (02) : 357 - 368
  • [6] Gill P. E., 1981, PRACTICAL OPTIMIZATI
  • [7] ROBUST REGRESSION USING ITERATIVELY RE-WEIGHTED LEAST-SQUARES
    HOLLAND, PW
    WELSCH, RE
    [J]. COMMUNICATIONS IN STATISTICS PART A-THEORY AND METHODS, 1977, 6 (09): : 813 - 827
  • [8] Huber PJ., 1981, ROBUST STATISTICS
  • [9] Johnson NL., 1970, DISTRIBUTIONS STAT C
  • [10] ROBUST METHODS IN INVERSE-THEORY
    SCALES, JA
    GERSZTENKORN, A
    [J]. INVERSE PROBLEMS, 1988, 4 (04) : 1071 - 1091