ALGEBRAIC ANALOG DECODING OF LINEAR BINARY CODES

被引:18
作者
RUDOLPH, LD
HARTMANN, CRP
HWANG, TY
DUC, NQ
机构
[1] MINIST COMMUN,TELECOMMUN LABS,CHUNG 320,TAIWAN
[2] TELECOM AUSTRALIA RES LABS,CLAYTON N 3168,VICTORIA,AUSTRALIA
关键词
D O I
10.1109/TIT.1979.1056073
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Bit-by-bit soft-decision decoding of binary cyclic codes is considered. A significant reduction in decoder complexity can be achieved by requiring only that the decoder correct all analog error patterns which fall within a Euclidean sphere whose radius is equal to half the minimum Euclidean distance of the code. Such a “maximum-radius” decoding scheme is asymptotically optimum for the additive white Gaussian noise (AWGN) channel. An iterative extension of the basic algebraic analog decoding scheme is discussed, and performance curves are given for the (17,9), (21,11), and (73,45) codes on the AWGN channel. © 1979 IEEE
引用
收藏
页码:430 / 440
页数:11
相关论文
共 9 条
[1]  
FELLER W, 1965, INTRO PROBABILITY TH, V1, P166
[2]  
FORNEY GD, 1966, CONCATENATED CODES, P52
[3]   ASYMPTOTIC PERFORMANCE OF OPTIMUM BIT-BY-BIT DECODING FOR WHITE GAUSSIAN CHANNEL [J].
HARTMANN, CRP ;
RUDOLPH, LD ;
MEHROTRA, KG .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1977, 23 (04) :520-522
[4]   OPTIMUM SYMBOL-BY-SYMBOL DECODING RULE FOR LINEAR CODES [J].
HARTMANN, CRP ;
RUDOLPH, LD .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1976, 22 (05) :514-517
[5]  
HWANG TY, 1977, THESIS SYRACUSE U
[6]  
Massey J. L., 1963, THRESHOLD DECODING
[7]  
ROUSSAS G, 1973, 1ST COURSE MATH STAT, P51
[8]   DECODING BY SEQUENTIAL CODE REDUCTION [J].
RUDOLPH, LD ;
HARTMANN, CR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1973, 19 (04) :549-555
[9]  
RADCTR7870 CNR INC R