INVERSE SCATTERING TRANSFORM, THE CYLINDRICAL KORTEWEG-DEVRIES EQUATION AND SIMILARITY SOLUTIONS

被引:32
作者
JOHNSON, RS
机构
[1] School of Mathematics, University of Newcastle upon Tyne
关键词
D O I
10.1016/0375-9601(79)90002-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that the inverse scattering transform for the cylindrical KdV equation can be obtained directly from that for the 2-D KdV equation. Using this transform for the similarity solution, we obtain two representations of a Painlevé transcendent. © 1979.
引用
收藏
页码:197 / 199
页数:3
相关论文
共 8 条
[1]   EXACT LINEARIZATION OF A PAINLEVE TRANSCENDENT [J].
ABLOWITZ, MJ ;
SEGUR, H .
PHYSICAL REVIEW LETTERS, 1977, 38 (20) :1103-1106
[2]  
CALOGERO F, 1978, 93 I FIS G MARC REPR
[3]  
DRYUMA VS, 1974, JETP LETT+, V19, P387
[4]  
FREEMAN NG, UNPUBLISHED
[5]  
JOHNSON RE, UNPUBLISHED
[6]   SOLUTION OF INVERSE SCATTERING PROBLEM FOR KADOMTSEV-PETVIASHVILI EQUATION BY METHOD OF SEPARATION OF VARIABLES [J].
JOHNSON, RS ;
THOMPSON, S .
PHYSICS LETTERS A, 1978, 66 (04) :279-281
[7]   CYLINDRICAL SOLITONS [J].
MAXON, S ;
VIECELLI, J .
PHYSICS OF FLUIDS, 1974, 17 (08) :1614-1616
[8]  
Zakharov V. E., 1974, FUNCT ANAL APPL+, V8, P226, DOI DOI 10.1007/BF01075696