ON STRONG PSEUDOMONOTONICITY AND (SEMI)STRICT QUASIMONOTONICITY

被引:33
作者
HADJISAVVAS, N [1 ]
SCHAIBLE, S [1 ]
机构
[1] UNIV CALIF RIVERSIDE,GRAD SCH MANAGEMENT,RIVERSIDE,CA 92521
关键词
STRONGLY PSEUDOCONVEX FUNCTIONS; (SEMI)STRICTLY QUASI-CONVEX; STRONGLY PSEUDOMONOTONE MAPS; (SEMI)STRICTLY QUASI-MONOTONE MAPS;
D O I
10.1007/BF00941891
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
New concepts of strong pseudomonotonicity, strict quasimonotonicity, and semistrict quasimonotonicity of a map are introduced and their properties are studied. In the case of a differentiable gradient map, we show that strong pseudomonotonicity of the gradient is equivalent to strong pseudoconvexity of the underlying function. This does not hold for a different concept of strong pseudomonotonicity in Ref. 1. Analogous results are shown for strict quasimonotonicity and semistrict quasimonotonicity.
引用
收藏
页码:139 / 155
页数:17
相关论文
共 6 条
[1]  
AVRIEL M, 1988, GENERALIZED CONCAVIT
[2]   9 KINDS OF QUASI-CONCAVITY AND CONCAVITY [J].
DIEWERT, WE ;
AVRIEL, M ;
ZANG, I .
JOURNAL OF ECONOMIC THEORY, 1981, 25 (03) :397-420
[3]   CHARACTERIZATIONS OF GENERALIZED MONOTONE MAPS [J].
KARAMARDIAN, S ;
SCHAIBLE, S ;
CROUZEIX, JP .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1993, 76 (03) :399-413
[4]   7 KINDS OF MONOTONE MAPS [J].
KARAMARDIAN, S ;
SCHAIBLE, S .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1990, 66 (01) :37-46
[5]  
Lang S., 1983, REAL ANAL, VSecond edition
[6]  
Mangasarian O.L., 1969, NONLINEAR PROGRAMMIN