AREA INTEGRAL ESTIMATES FOR THE BIHARMONIC OPERATOR IN LIPSCHITZ-DOMAINS

被引:18
作者
PIPHER, J
VERCHOTA, G
机构
[1] SYRACUSE UNIV,DEPT MATH,SYRACUSE,NY 13244
[2] UNIV CHICAGO,DEPT MATH,CHICAGO,IL 60637
关键词
D O I
10.2307/2001830
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D is contained in or equal to R(n) be a Lipschitz domain and let u be a function biharmonic in D, i.e., DELTA-DELTA-u = 0 in D. We prove that the nontangential maximal function and the square function of the gradient of u have equivalent L(p)(d-mu) norms, where d-mu is-an-element-of A(infinity) and d-sigma is surface measure on partial derivative D.
引用
收藏
页码:903 / 917
页数:15
相关论文
共 19 条
[1]  
BURKHOLDER D, 1972, STUD MATH, V44, P427
[2]   THE DIRICHLET PROBLEM FOR THE BIHARMONIC EQUATION IN A C1 DOMAIN IN THE PLANE [J].
COHEN, J ;
GOSSELIN, J .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1983, 32 (05) :635-685
[3]  
COIFMAN RR, 1974, STUD MATH, V51, P241
[4]   THE DIRICHLET PROBLEM FOR THE BIHARMONIC EQUATION IN A LIPSCHITZ DOMAIN [J].
DAHLBERG, BEJ ;
KENIG, CE ;
VERCHOTA, GC .
ANNALES DE L INSTITUT FOURIER, 1986, 36 (03) :109-135
[5]   AREA INTEGRAL ESTIMATES FOR ELLIPTIC DIFFERENTIAL-OPERATORS WITH NON-SMOOTH COEFFICIENTS [J].
DAHLBERG, BEJ ;
JERISON, DS ;
KENIG, CE .
ARKIV FOR MATEMATIK, 1984, 22 (01) :97-108
[6]   WEIGHTED NORM INEQUALITIES FOR THE LUSIN AREA INTEGRAL AND THE NONTANGENTIAL MAXIMAL FUNCTIONS FOR FUNCTIONS HARMONIC IN A LIPSCHITZ DOMAIN [J].
DAHLBERG, BEJ .
STUDIA MATHEMATICA, 1980, 67 (03) :297-314
[7]  
DAHLBERG BEJ, UNPUB LP ESTIMATES S
[8]  
DAVID G, 1986, THESIS U PARIS SUD
[9]  
FEFFERMAN C, 1972, ACTA MATH-UPPSALA, V129, P137, DOI 10.1007/BF02392215
[10]  
JERISON D., 1982, MAA STUDIES MATH, V23, P1