DYNAMIC HALF-SPACE RANGE REPORTING AND ITS APPLICATIONS

被引:63
作者
AGARWAL, PK [1 ]
MATOUSEK, J [1 ]
机构
[1] CHARLES UNIV,DEPT MATH APPL,CR-18000 PRAGUE 1,CZECH REPUBLIC
关键词
ARRANGEMENTS; CUTTINGS; RANGE-SEARCHING; DYNAMIZATION;
D O I
10.1007/BF01293483
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider the half-space range-reporting problem: Given a set S of n points in R(d), preprocess it into a data structure, so that, given a query half-space gamma, all k points of S boolean AND gamma can be reported efficiently. We extend previously known static solutions to dynamic ones, supporting insertions and deletions of points of S. For a given parameter m, n less than or equal to m less than or equal to n([d/2]) and an arbitrarily small positive constant epsilon, we achieve O(m(1+epsilon)) space and preprocessing time, O((n/m([d/2])) log n + k) query time, and O(m(1+epsilon)/n) amortized update time (d greater than or equal to 3). We present, among others, the following applications: an O(n(1+epsilon))-time algorithm for computing convex layers in R(3), and an output sensitive algorithm for computing a level in an arrangements of planes in R(3), whose time complexity is O((b + n). n(epsilon)), where b is the size of the level.
引用
收藏
页码:325 / 345
页数:21
相关论文
共 36 条
[1]   RAY SHOOTING AND PARAMETRIC SEARCH [J].
AGARWAL, PK ;
MATOUSEK, J .
SIAM JOURNAL ON COMPUTING, 1993, 22 (04) :794-806
[2]   EUCLIDEAN MINIMUM SPANNING-TREES AND BICHROMATIC CLOSEST PAIRS [J].
AGARWAL, PK ;
EDELSBRUNNER, H ;
SCHWARZKOPF, O ;
WELZL, E .
DISCRETE & COMPUTATIONAL GEOMETRY, 1991, 6 (05) :407-422
[3]  
AGARWAL PK, 1992, 33RD P IEEE S F COMP, P80
[4]  
AGGARWAL A, 1990, 21ST P ACM S THEOR C, P331
[5]  
Alon N., 1992, COMB PROBAB COMPUT, V1, P189
[6]  
[Anonymous], 1987, EATCS MONOGRAPHS THE
[7]   POINTS AND TRIANGLES IN THE PLANE AND HALVING PLANES IN SPACE [J].
ARONOV, B ;
CHAZELLE, B ;
EDELSBRUNNER, H ;
GUIBAS, LJ ;
SHARIR, M ;
WENGER, R .
DISCRETE & COMPUTATIONAL GEOMETRY, 1991, 6 (05) :435-442
[8]  
BENTLEY JL, 1980, J ALGORITHMS, V0001, P00301
[9]   DIAMETER, WIDTH, CLOSEST LINE PAIR, AND PARAMETRIC SEARCHING [J].
CHAZELLE, B ;
EDELSBRUNNER, H ;
GUIBAS, L ;
SHARIR, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 1993, 10 (02) :183-196
[10]   THE POWER OF GEOMETRIC DUALITY [J].
CHAZELLE, B ;
GUIBAS, LJ ;
LEE, DT .
BIT, 1985, 25 (01) :76-90