HIERARCHICAL MODEL FOR THE MULTIFRACTALITY OF DIFFUSION-LIMITED AGGREGATION

被引:15
作者
LEE, J
HAVLIN, S
STANLEY, HE
KIEFER, JE
机构
[1] BOSTON UNIV, DEPT PHYS, BOSTON, MA 02215 USA
[2] NIH, DCRT, PHYS SCI LAB, BETHESDA, MD 20892 USA
来源
PHYSICAL REVIEW A | 1990年 / 42卷 / 08期
关键词
D O I
10.1103/PhysRevA.42.4832
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a deterministic model of diffusion-limited aggregation (DLA), based on the concept of an infinite hierarchy of voids connected by narrow channels. This hierarchical model reproduces many features of DLA: (1) The growth-site probability distribution shows multifractal behavior, (2) the minimum growth probability decreases with size L as lnpmin(L)-(lnL)2, and (3) the maximum growth probability scales as pmax(L)Lmin-. © 1990 The American Physical Society.
引用
收藏
页码:4832 / 4837
页数:6
相关论文
共 31 条
[1]   GROWTH PROBABILITY-DISTRIBUTION IN KINETIC AGGREGATION PROCESSES [J].
AMITRANO, C ;
CONIGLIO, A ;
DILIBERTO, F .
PHYSICAL REVIEW LETTERS, 1986, 57 (08) :1016-1019
[2]  
AMITRANO C, UNPUB
[3]   ANISOTROPY AND CLUSTER GROWTH BY DIFFUSION-LIMITED AGGREGATION [J].
BALL, RC ;
BRADY, RM ;
ROSSI, G ;
THOMPSON, BR .
PHYSICAL REVIEW LETTERS, 1985, 55 (13) :1406-1409
[4]   ON THE MULTIFRACTAL NATURE OF FULLY-DEVELOPED TURBULENCE AND CHAOTIC SYSTEMS [J].
BENZI, R ;
PALADIN, G ;
PARISI, G ;
VULPIANI, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (18) :3521-3531
[5]   BREAKDOWN OF MULTIFRACTAL BEHAVIOR IN DIFFUSION-LIMITED AGGREGATES [J].
BLUMENFELD, R ;
AHARONY, A .
PHYSICAL REVIEW LETTERS, 1989, 62 (25) :2977-2980
[6]   NOVEL DYNAMIC SCALING IN KINETIC GROWTH PHENOMENA [J].
CONIGLIO, A ;
ZANNETTI, M .
PHYSICA A, 1990, 163 (01) :325-333
[7]  
CONIGLIO A, 1985, GROWTH FORM FRACTAL, P101
[8]  
Feder J., 1988, FRACTALS
[9]  
FEDER J, 1988, RANDOM FLUCTUATIONS
[10]   BREAKDOWN OF MULTIFRACTAL BEHAVIOR IN DIFFUSION-LIMITED AGGREGATES - COMMENT [J].
FOURCADE, B ;
TREMBLAY, AMS .
PHYSICAL REVIEW LETTERS, 1990, 64 (15) :1842-1842