LATTICE-ORDERED RINGS AND FUNCTION RINGS

被引:48
作者
HENRIKSEN, M
ISBELL, JR
机构
关键词
D O I
10.2140/pjm.1962.12.533
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:533 / &
相关论文
共 14 条
[1]  
Artin E., 1926, ABHANDLUNGEN HAMBURG, V5, P100
[2]   On the structure of abstract algebras [J].
Birkhoff, G .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1935, 31 :433-454
[3]  
Birkhoff G., 1956, AN ACAD BRAS CIENC, V28, P41
[4]   AN ISOMORPHISM THEOREM FOR REAL-CLOSED FIELDS [J].
ERDOS, P ;
GILLMAN, L ;
HENRIKSEN, M .
ANNALS OF MATHEMATICS, 1955, 61 (03) :542-554
[5]  
Farkas J, 1902, J REINE ANGEW MATH, V124, P1
[6]   MAXIMAL IDEMPOTENT SETS IN A RING WITH UNIT [J].
FOSTER, AL .
DUKE MATHEMATICAL JOURNAL, 1946, 13 (02) :247-258
[7]  
Gillman L., 1957, FUND MATH, V45, P1
[8]   A STRUCTURE THEORY FOR A CLASS OF LATTICE-ORDERED RINGS [J].
JOHNSON, DG .
ACTA MATHEMATICA, 1960, 104 (3-4) :163-215
[9]  
KUHN HW, 1957, LINEAR INEQUALITIES
[10]   RADICALS IN FUNCTION RINGS [J].
PIERCE, RS .
DUKE MATHEMATICAL JOURNAL, 1956, 23 (02) :253-261