RELATIONS FOR CLEBSCH-GORDAN AND RACAH COEFFICIENTS IN SUQ(2) AND YANG-BAXTER EQUATIONS

被引:72
作者
NOMURA, M
机构
关键词
D O I
10.1063/1.528612
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:2397 / 2405
页数:9
相关论文
共 31 条
[1]   EXACTLY SOLVABLE MODELS AND NEW LINK POLYNOMIALS .2. LINK POLYNOMIALS FOR CLOSED 3-BRAIDS [J].
AKUTSU, Y ;
DEGUCHI, T ;
WADATI, M .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1987, 56 (10) :3464-3479
[2]  
[Anonymous], 1985, SOVIET MATH DOKL
[3]   SET OF ORTHOGONAL POLYNOMIALS THAT GENERALIZE THE RACAH COEFFICIENTS OR 6-J SYMBOLS [J].
ASKEY, R ;
WILSON, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1979, 10 (05) :1008-1016
[4]   HEISENBERG MAGNET WITH AN ARBITRARY SPIN AND ANISOTROPIC CHIRAL FIELD [J].
BABUJIAN, HM ;
TSVELICK, AM .
NUCLEAR PHYSICS B, 1986, 265 (01) :24-44
[5]  
Baxter R. J., 1982, EXACTLY SOLVED MODEL
[6]  
BIEDENHARN LC, 1953, J MATH PHYS CAMB, V31, P287
[7]  
BIEDENHARN LC, 1981, ENCY MATH ITS APPLIC, V8
[8]   A Q-DIFFERENCE ANALOG OF U(G) AND THE YANG-BAXTER EQUATION [J].
JIMBO, M .
LETTERS IN MATHEMATICAL PHYSICS, 1985, 10 (01) :63-69
[9]   A POLYNOMIAL INVARIANT FOR KNOTS VIA VONNEUMANN-ALGEBRAS [J].
JONES, VFR .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 12 (01) :103-111
[10]  
Judd B. R., 1963, OPERATOR TECHNIQUES