A COMBINATORIAL CONVERSE TO THE PERRON-FROBENIUS THEOREM

被引:12
作者
ESCHENBACH, CA [1 ]
JOHNSON, CR [1 ]
机构
[1] COLL WILLIAM & MARY,DEPT MATH,WILLIAMSBURG,VA 23185
关键词
D O I
10.1016/0024-3795(90)90026-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A sign pattern requires (allows) the Perron property if every (some) matrix with that sign pattern has its special radius among its eigenvalues. We characterize those sign patterns that require the Perron property, which, in a sense, provides a converse to the classical Perron-Frobenius theorem. Also, a large class of patterns that allow the Perron property is identified, but a complete characterization remains an open problem. © 1990.
引用
收藏
页码:173 / 180
页数:8
相关论文
共 4 条
[1]  
Engel G. M., 1973, Linear Algebra and Its Applications, V7, P301, DOI 10.1016/S0024-3795(73)80003-5
[2]  
ENGEL GM, 1975, CZECH MATH J, V25, P389
[3]  
Horn R.A, 2012, MATRIX ANAL, V2nd ed.
[4]   Research on Markoff chains - First paper [J].
Romanovsky, V .
ACTA MATHEMATICA, 1936, 66 (01) :147-251