AN EIKONAL-CURVATURE EQUATION FOR ACTION-POTENTIAL PROPAGATION IN MYOCARDIUM

被引:100
作者
KEENER, JP
机构
[1] Department of Mathematics, University of Utah, Salt Lake City, Utah
关键词
ACTION POTENTIAL PROPAGATION; ANISOTROPY EIKONAL-CURVATURE EQUATION;
D O I
10.1007/BF00163916
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We derive an "eikonal-curvature" equation to describe the propagation of action potential wavefronts in myocardium. This equation is used to study the effects of fiber orientation on propagation in the myocardial wall. There are significant computational advantages to the use of an eikonal-curvature equation over a full ionic model of action potential spread. With this model, it is shown that the experimentally observed misalignment of spreading action potential "ellipses" from fiber orientation in level myocardial surfaces is adequately explained by the rotation of fiber orientation through the myocardial wall. Additionally, it is shown that apparently high propagation velocities on the epicardial and endocardial surfaces are the result of propagation into the midwall region and acceleration along midwall fibers before reemergence at an outer surface at a time preceding what could be accomplished with propagation along the surface alone.
引用
收藏
页码:629 / 651
页数:23
相关论文
共 39 条
[1]  
ARONSON DG, 1973, PARTIAL DIFFERENTIAL
[2]   EFFECTS OF CELLULAR UNCOUPLING ON CONDUCTION IN ANISOTROPIC CANINE VENTRICULAR MYOCARDIUM [J].
BALKE, CW ;
LESH, MD ;
SPEAR, JF ;
KADISH, A ;
LEVINE, JH ;
MOORE, EN .
CIRCULATION RESEARCH, 1988, 63 (05) :879-892
[3]   RECONSTRUCTION OF ACTION POTENTIAL OF VENTRICULAR MYOCARDIAL FIBERS [J].
BEELER, GW ;
REUTER, H .
JOURNAL OF PHYSIOLOGY-LONDON, 1977, 268 (01) :177-210
[4]   THE GROWTH OF CRYSTALS AND THE EQUILIBRIUM STRUCTURE OF THEIR SURFACES [J].
BURTON, WK ;
CABRERA, N ;
FRANK, FC .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1951, 243 (866) :299-358
[5]  
Cole J. D., 1968, PERTURBATION METHODS
[6]   GAP JUNCTION UNCOUPLING AND DISCONTINUOUS PROPAGATION IN THE HEART - A COMPARISON OF EXPERIMENTAL-DATA WITH COMPUTER-SIMULATIONS [J].
COLE, WC ;
PICONE, JB ;
SPERELAKIS, N .
BIOPHYSICAL JOURNAL, 1988, 53 (05) :809-818
[7]   WAVE-FRONT PROPAGATION IN AN ACTIVATION MODEL OF THE ANISOTROPIC CARDIAC TISSUE - ASYMPTOTIC ANALYSIS AND NUMERICAL SIMULATIONS [J].
COLLI-FRANZONE, P ;
GUERRI, L ;
ROVIDA, S .
JOURNAL OF MATHEMATICAL BIOLOGY, 1990, 28 (02) :121-176
[8]   DIRECTIONAL DIFFERENCES IN EXCITABILITY AND MARGIN OF SAFETY FOR PROPAGATION IN SHEEP VENTRICULAR EPICARDIAL MUSCLE [J].
DELGADO, C ;
STEINHAUS, B ;
DELMAR, M ;
CHIALVO, DR ;
JALIFE, J .
CIRCULATION RESEARCH, 1990, 67 (01) :97-110
[9]   INTERCALATED DISKS AS A CAUSE FOR DISCONTINUOUS PROPAGATION IN CARDIAC-MUSCLE - A THEORETICAL SIMULATION [J].
DIAZ, PJ ;
RUDY, Y ;
PLONSEY, R .
ANNALS OF BIOMEDICAL ENGINEERING, 1983, 11 (3-4) :177-189
[10]   FAST SODIUM CURRENT IN CARDIAC-MUSCLE - A QUANTITATIVE DESCRIPTION [J].
EBIHARA, L ;
JOHNSON, EA .
BIOPHYSICAL JOURNAL, 1980, 32 (02) :779-790