THEORY OF ELECTRON-ENERGY-LOSS IN A RANDOM SYSTEM OF SPHERES

被引:54
作者
BARRERA, RG
FUCHS, R
机构
[1] IOWA STATE UNIV SCI & TECHNOL, AMES LAB, AMES, IA 50011 USA
[2] IOWA STATE UNIV SCI & TECHNOL, DEPT PHYS & ASTRON, AMES, IA 50011 USA
关键词
D O I
10.1103/PhysRevB.52.3256
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We derive an expression for the inverse longitudinal dielectric function epsilon(-1)(k,omega) of random system of identical spherical particles with dielectric function epsilon(1)(omega) in a host with dielectric function epsilon(2)(omega). A spectral representation allows us to separate geometrical and material effects by writing epsilon(-1)(k,omega) in terms of a spectral function, which depends only on the wave vector k and the geometry of the system. Multipoles of arbitrary order are included. Using a mean-field theory and introducing the two-particle correlation function, we carry out a configuration average and find a simple result for the spectral function. From the loss function Im[-epsilon(-1)(k,omega)] we calculate the energy loss probability per unit path length for fast electrons passing through a system of colloidal aluminum particles.
引用
收藏
页码:3256 / 3273
页数:18
相关论文
共 34 条