CONVERGENCE OF THE DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR HYPERBOLIC CONSERVATION-LAWS

被引:84
作者
JAFFRE, J
JOHNSON, C
SZEPESSY, A
机构
[1] CHARLES UNIV,DEPT MATH,S-42196 GOTHENBURG,SWEDEN
[2] ROYAL INST TECHNOL,NADA,S-10044 STOCKHOLM,SWEDEN
关键词
D O I
10.1142/S021820259500022X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove convergence of the discontinuous Galerkin finite element method with polynomials of arbitrary degree q greater than or equal to 0 on general unstructured meshes for scalar conservation laws in multidimensions. We also prove for systems of conservation laws that limits of discontinuous Galerkin finite element solutions satisfy the entropy inequalities of the system related to convex entropies.
引用
收藏
页码:367 / 386
页数:20
相关论文
共 44 条
[1]  
BARTH T, AGARD787 REP
[2]  
CHEN GQ, 1993, MATH COMPUT, V61, P629, DOI 10.1090/S0025-5718-1993-1185240-3
[3]   THE RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .4. THE MULTIDIMENSIONAL CASE [J].
COCKBURN, B ;
HOU, SC ;
SHU, CW .
MATHEMATICS OF COMPUTATION, 1990, 54 (190) :545-581
[4]  
COCKBURN B, 1991, ERROR ESTIMATES FINI
[5]  
COCKBURN B, IN PRESS SIAM J NUME
[6]   THE PIECEWISE PARABOLIC METHOD (PPM) FOR GAS-DYNAMICAL SIMULATIONS [J].
COLELLA, P ;
WOODWARD, PR .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 54 (01) :174-201
[7]  
COQUEL F, 1991, MATH COMPUT, V57, P169, DOI 10.1090/S0025-5718-1991-1079010-2
[8]  
COQUEL F, 1991, FINITE VOLUME METHOD
[10]   MONOTONE-DIFFERENCE APPROXIMATIONS FOR SCALAR CONSERVATION-LAWS [J].
CRANDALL, MG ;
MAJDA, A .
MATHEMATICS OF COMPUTATION, 1980, 34 (149) :1-21