MODULATIONAL INTERACTION BETWEEN DRIFT WAVES AND TRAPPED ION CONVECTIVE CELLS - A PARADIGM FOR THE SELF-CONSISTENT INTERACTION OF LARGE-SCALE SHEARED FLOWS WITH SMALL-SCALE FLUCTUATIONS

被引:49
作者
LEBEDEV, VB
DIAMOND, PH
SHAPIRO, VD
SOLOVIEV, GI
机构
[1] Department of Physics, University of California, San Diego
关键词
D O I
10.1063/1.870998
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The linear and nonlinear dynamics of modulational interaction between small-scale drift waves and large-scale trapped ion convective cells are investigated. This example is a paradigm of the more general problem of describing the self-consistent interaction of small-scale fluctuations with mean sheared flows. The growth rate of modulational instability is determined by spectral properties of drift waves and can exceed the linear growth rate of the trapped ion mode. An anisotropic spectrum of drift waves is always modlationally unstable. The spatial orientation of the convective cell pattern and structure (i.e., shear strength) is determined by drift wave spectrum anisotropy and propagation direction. In the presence of a sheared magnetic field, which pins small-scale drift waves to mode rational surfaces, the modulational growth rate becomes intrinsically anisotropic, on account of the modified radial structure of drift waves. (C) 1995 American Institute of Physics.
引用
收藏
页码:4420 / 4431
页数:12
相关论文
共 33 条
[1]  
Perkins F.W., Barnes C.W., Johnson D.W., Scott S.D., Zarnstorff M.C., Bell M.G., Bell R.E., Bush C.E., Grek B., Hill K.W., Mansfield D.K., Park H., Ramsey A.T., Schivell J., Stratton B.C., Synakowski E., Phys. Fluids B., 5, (1993)
[2]  
Yushmanov P.N., Takizuka T., Riedel K.S., Kardaun O.J.W.F., Cordey J.G., Kaye S.M., Post D.E., Nucl. Fusion, 30, (1990)
[3]  
Luce T.C., Petty C.C., Burrell K.H., Forest C.B., Gohil P., Groetj-ner R.J., De Haas J.C.M., James R.A., Makowski M.A., Experimental constraints on transport
[4]  
Neade D.M., Arunasalam V., Barnes C.W., Bell M.G., Bell R., Bitter M., Bovin R., Bretz N.L., Rudny R., Bush C.E., Cavallo A., Cheng C.Z., Chu T.K., Cohen S.A., Cowley S., Davis S.L., Dimock D.L., Dooling J., Dylla H.E., Efthimson P.C., Ehrhardt A.B., Fonck R.J., Fredrickson E.D., Furth H.P., Goldston R.J., Greene G.J., Grek B., Grisham L.R., Hammett G.W., Hawryluk R.J., Hill K.W., Hosea J.C., Howell R.B., Hsuan H., Hulse R.A., Janos A.C., Jassby D.L., Jobes F.C., Johnson D.W., Johnson L.C., Kai
[5]  
Fonck R.J., Durst R.D., Evensen H., Kim J.S., Paul S.F., Bull. Am. Phys. Soc., 39, (1994)
[6]  
Gentle K.W., Nucl. Technol. Fusion, 1, (1981)
[7]  
Tsui H.Y.W., Schoch P.M., Wootton A.J., Phys. Fluids B., 5, (1993)
[8]  
Kadomtsev B.B., Pogutse O.P., Reviews of Plasma Physics, 5, (1970)
[9]  
Terry P.W., Newman D.E., Biglari H., Nazikian R., Diamond P.H., Lebedev V.B., Liang V.B., Shapiro V.D., Shevchenko V.I., Carreras B.A., Sidikman K.L., Garcia L., Craddock G.G., Crotinger J.A., Koniges A.E., Plasma Physics and Controlled Fusion Research, 2, (1992)
[10]  
Biglari H., Diamond P.H., Phys. Fluids B., 3, (1991)