A QUASI-NEWTON METHOD FOR ELLIPTIC BOUNDARY-VALUE-PROBLEMS

被引:17
作者
KELLEY, CT
SACHS, EW
机构
[1] North Carolina State Univ, Raleigh,, NC, USA, North Carolina State Univ, Raleigh, NC, USA
关键词
D O I
10.1137/0724037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
32
引用
收藏
页码:516 / 531
页数:16
相关论文
共 32 条
[1]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[2]   ESTIMATES NEAR BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .2. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1964, 17 (01) :35-&
[3]   GLOBAL APPROXIMATE NEWTON METHODS [J].
BANK, RE ;
ROSE, DJ .
NUMERISCHE MATHEMATIK, 1981, 37 (02) :279-295
[4]  
BERS L, 1964, PARTIAL DIFFERENTIAL, P131
[5]  
Birkhoff G., 1984, NUMERICAL SOLUTION E
[6]  
Broyden C. G., 1973, Journal of the Institute of Mathematics and Its Applications, V12, P223
[7]   CONVERGENCE OF AN ALGORITHM FOR SOLVING SPARSE NONLINEAR SYSTEMS [J].
BROYDEN, CG .
MATHEMATICS OF COMPUTATION, 1971, 25 (114) :285-&
[8]  
BROYDEN CG, 1965, MATH COMPUT, V19, P577, DOI DOI 10.1090/S0025-5718-1965-0198670-6
[9]  
BRYAN C, 1964, REND CIRC MAT PALERM, V13, P177
[10]   CONVERGENCE THEOREMS FOR LEAST-CHANGE SECANT UPDATE METHODS [J].
DENNIS, JE ;
WALKER, HF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (06) :949-987