BIFURCATION DIAGRAM OF A MODEL CHEMICAL-REACTION .2. 2 DIMENSIONAL TIME-PERIODIC PATTERNS

被引:7
作者
ERNEUX, T
HERSCHKOWITZKAUFMAN, M
机构
[1] Faculté des Sciences, Université Libre de Bruxelles, Bruxelles, 1050, Chimie-physique II, Campus plaine C.P.231, Boulevard du Triomphe
关键词
D O I
10.1007/BF02462375
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The bifurcation equations of a general reaction-diffusion system are derived for a circular surface. Particular attention is directed to the deformation of the circular boundary into an elliptic shape. This leads to a new bifurcation diagram which may involve secondary bifurcation, but which retains however the basic characteristics of the solutions for the circular case. Numerical simulations of the various coexisting, time-periodic and space-dependent solutions, are presented for a simple model reaction and circular geometry. © 1979 Society for Mathematical Biology.
引用
收藏
页码:767 / 790
页数:24
相关论文
共 44 条
[1]  
ASHKENAZI M, 1978, J MATH BIOL, V5, P305
[2]   BIFURCATION ANALYSIS OF REACTION-DIFFUSION EQUATIONS .3. CHEMICAL OSCILLATIONS [J].
AUCHMUTY, JFG ;
NICOLIS, G .
BULLETIN OF MATHEMATICAL BIOLOGY, 1976, 38 (04) :325-350
[3]  
AUCHMUTY JFG, 1975, B MATH BIOL, V37, P323, DOI 10.1007/BF02459519
[4]  
AUCHMUTY JFG, UNPUBLISHED
[5]   INSTABILITIES, OSCILLATIONS AND CHEMICAL WAVES IN AN OLIGOMERIC MODEL FOR MEMBRANE-TRANSPORT [J].
BLUMENTHAL, R .
JOURNAL OF THEORETICAL BIOLOGY, 1975, 49 (01) :219-239
[6]   CHEMICAL OSCILLATIONS IN A MEMBRANE [J].
CAPLAN, SR ;
NAPARSTE.A ;
ZABUSKY, NJ .
NATURE, 1973, 245 (5425) :364-366
[7]  
COHEN D, UNPUBLISHED
[8]   ROTATING WAVES AS ASYMPTOTIC SOLUTIONS OF A MODEL CHEMICAL-REACTION [J].
ERNEUX, T ;
HERSCHKOWITZKAUFMAN, M .
JOURNAL OF CHEMICAL PHYSICS, 1977, 66 (01) :248-250
[9]  
ERNEUX T, 1979, B MATH BIOL, V41, P21
[10]  
ERNEUX T, 1978, THESIS U LIBRE