ANALYSIS OF SIDE-CHAIN ORGANIZATION ON A REFINED MODEL OF CHARYBDOTOXIN - STRUCTURAL AND FUNCTIONAL IMPLICATIONS

被引:148
作者
BONTEMS, F [1 ]
GILQUIN, B [1 ]
ROUMESTAND, C [1 ]
MENEZ, A [1 ]
TOMA, F [1 ]
机构
[1] CE SACLAY, DEPT INGN & ETUD PROT, STRUCT PROT SOLUT LAB, F-91191 GIF SUR YVETTE, FRANCE
关键词
D O I
10.1021/bi00149a003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The spatial organization of side chains on a refined model of charybdotoxin is presented. First, the structural role of two groups of well-defined, low-accessible side chains (Thr3, Val5, Val16, Leu20, Cys33 and Leu20, His21, Thr23, Cys17, Cys35) is discussed. These side chains are conserved in three out of the five known scorpion toxins acting on K+ channels. Interestingly, they are not conserved in scyllatoxin which presents a slightly different secondary structure organization. Second, the spatial organization of all positively charged residues is analyzed. Comparison with the results presented by Park and Miller [(1992) Biochemistry (preceding paper in this issue)] shows that all functionally important positive residues are located on the beta-sheet side of the toxin. These results are different from those obtained by Auguste et al. [(1992) Biochemistry 31, 648-654] on scyllatoxin, which blocks a different type of K+ channel. This study shows, in fact, that functionally important positive residues are located on the helix side of the toxin. Thus, charybdotoxin and scyllatoxin, which present the same global fold, interact with two different classes of K+ channels by two different parts of the motif.
引用
收藏
页码:7756 / 7764
页数:9
相关论文
共 29 条
[1]   CHARYBDOTOXIN BLOCK OF SINGLE CA-2+-ACTIVATED K+ CHANNELS - EFFECTS OF CHANNEL GATING, VOLTAGE, AND IONIC-STRENGTH [J].
ANDERSON, CS ;
MACKINNON, R ;
SMITH, C ;
MILLER, C .
JOURNAL OF GENERAL PHYSIOLOGY, 1988, 91 (03) :317-333
[2]   2-DIMENSIONAL SPECTROSCOPY - APPLICATION TO NUCLEAR MAGNETIC-RESONANCE [J].
AUE, WP ;
BARTHOLDI, E ;
ERNST, RR .
JOURNAL OF CHEMICAL PHYSICS, 1976, 64 (05) :2229-2246
[3]   SCYLLATOXIN, A BLOCKER OF CA2+-ACTIVATED K+ CHANNELS - STRUCTURE-FUNCTION-RELATIONSHIPS AND BRAIN LOCALIZATION OF THE BINDING-SITES [J].
AUGUSTE, P ;
HUGUES, M ;
MOURRE, C ;
MOINIER, D ;
TARTAR, A ;
LAZDUNSKI, M .
BIOCHEMISTRY, 1992, 31 (03) :648-654
[4]   3-DIMENSIONAL STRUCTURE OF NATURAL CHARYBDOTOXIN IN AQUEOUS-SOLUTION BY H-1-NMR - CHARYBDOTOXIN POSSESSES A STRUCTURAL MOTIF FOUND IN OTHER SCORPION TOXINS [J].
BONTEMS, F ;
ROUMESTAND, C ;
BOYOT, P ;
GILQUIN, B ;
DOLJANSKY, Y ;
MENEZ, A ;
TOMA, F .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1991, 196 (01) :19-28
[5]   REFINED STRUCTURE OF CHARYBDOTOXIN - COMMON MOTIFS IN SCORPION TOXINS AND INSECT DEFENSINS [J].
BONTEMS, F ;
ROUMESTAND, C ;
GILQUIN, B ;
MENEZ, A ;
TOMA, F .
SCIENCE, 1991, 254 (5037) :1521-1523
[6]   CRYSTALLOGRAPHIC R-FACTOR REFINEMENT BY MOLECULAR-DYNAMICS [J].
BRUNGER, AT ;
KURIYAN, J ;
KARPLUS, M .
SCIENCE, 1987, 235 (4787) :458-460
[7]  
BRUNGER AT, 1991, ACCOUNTS CHEM RES, V24, P54
[8]  
BRUNGER AT, 1988, X PLOR MANUAL
[9]   ASSIGNMENT OF COMPLEX H-1-NMR SPECTRA VIA TWO-DIMENSIONAL HOMONUCLEAR HARTMANN-HAHN SPECTROSCOPY [J].
DAVIS, DG ;
BAX, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1985, 107 (09) :2820-2821
[10]  
DREYER F, 1990, REV PHYSIOL BIOCH P, V115, P93