A REGULARITY RESULT FOR THE SINGULAR-VALUES OF A TRANSFER-MATRIX AND A QUADRATICALLY CONVERGENT ALGORITHM FOR COMPUTING ITS L-INFINITY-NORM

被引:136
作者
BOYD, S [1 ]
BALAKRISHNAN, V [1 ]
机构
[1] STANFORD UNIV,DEPT ELECT ENGN,INFORMAT SYST LAB,STANFORD,CA 94305
基金
美国国家科学基金会;
关键词
computation of L[!sub]∞[!/sub]-norm; H[!sub]∞[!/sub] control; Multi-input multi-output linear system; quadratic convergence; regularity of singular values; L[!sub]∞[!/sub]-norm; singular values; transfer matrix;
D O I
10.1016/0167-6911(90)90037-U
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The i-th singular value of a transfer matrix need not be a differentiable function of frequency where its multiplicity is greater than one. We show that near a local maximum, however, the largest singular value has a Lipschitz second derivative, but need not have a third derivative. Using this regularity result, we give a quadratically convergent algorithm for computing the L∞-norm of a transfer matrix. © 1990.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 17 条
[1]  
Boyd S., 1989, Mathematics of Control, Signals, and Systems, V2, P207, DOI 10.1007/BF02551385
[2]  
BOYD S, 1984 P C DEC CONTR
[3]   Subharmonic Functions and Performance Bounds on Linear Time-Invariant Feedback Systems [J].
Boyd, Stephen ;
Desoer, C. A. .
IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 1985, 2 (02) :153-170
[4]   A FAST ALGORITHM TO COMPUTE THE H-INFINITY-NORM OF A TRANSFER-FUNCTION MATRIX [J].
BRUINSMA, NA ;
STEINBUCH, M .
SYSTEMS & CONTROL LETTERS, 1990, 14 (04) :287-293
[5]  
BYERS R, 1982, THESIS CORNELL U
[6]  
CHANG BC, 1989, UNPUB INT J CONTROL
[7]  
CLEMENTS DJ, 1989, UNPUB EVALUATION H I
[8]  
DIENES P, 1957, TAYLOR SERIES
[9]   MULTIVARIABLE FEEDBACK DESIGN - CONCEPTS FOR A CLASSICAL-MODERN SYNTHESIS [J].
DOYLE, JC ;
STEIN, G .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1981, 26 (01) :4-16
[10]  
FRANCIS BA, 1987, LECTURE NOTES CONTRO, V88