A STRUCTURE-EXPLOITING ALGORITHM FOR NONLINEAR MINIMAX PROBLEMS

被引:10
作者
Conn, Andrew R. [1 ]
Li, Yuying [2 ]
机构
[1] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] Cornell Univ, Dept Comp Sci, Ithaca, NY 14853 USA
基金
加拿大自然科学与工程研究理事会;
关键词
nonlinear Chebyshev approximation;
D O I
10.1137/0802013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, some basic concepts are generalised which characterise the best linear Chebyshev approximation in one variable to general nonlinear minimax problems. A new method for solving a nonlinear minimax problem is presented, which exploits the structure and characterisation of the solution whenever possible. The algorithm is globally convergent with a superlinear convergence rate. Numerical results indicate the efficacy of the new method.
引用
收藏
页码:242 / 263
页数:22
相关论文
共 38 条
[1]  
ANDERSON D. H., 1977, NUMER MATH, V28, P167
[2]   Nonlinear Programming Using Minimax Techniques [J].
Bandler, J. W. ;
Charalambous, C. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1974, 13 (06) :607-619
[3]   OPTIMIZATION OF MICROWAVE NETWORKS BY RAZOR SEARCH [J].
BANDLER, JW ;
MACDONALD, PA .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1969, MT17 (08) :552-+
[4]   DIFFERENTIAL CORRECTION ALGORITHM FOR RATIONAL L-INFINITY-APPROXIMATION [J].
BARRODALE, I ;
ROBERTS, FDK ;
POWELL, MJD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1972, 9 (03) :493-+
[5]  
BARRODALE I., 1974, P 4 MAN C NUM MATH U, P177
[6]   PRIMAL METHODS ARE BETTER THAN DUAL METHODS FOR SOLVING OVERDETERMINED LINEAR-SYSTEMS IN THE L-INFINITY SENSE [J].
BARTELS, RH ;
CONN, AR ;
LI, YY .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (03) :693-726
[7]  
BUSOVACA S., 1985, CS8534 U WAT DEP COM
[8]   NONLINEAR MINIMAX OPTIMIZATION AS A SEQUENCE OF LEAST PTH OPTIMIZATION WITH FINITE VALUES OF P [J].
CHARALAMBOUS, C ;
BANDLER, JW .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1976, 7 (04) :377-391
[9]   EFFICIENT METHOD TO SOLVE MINIMAX PROBLEM DIRECTLY [J].
CHARALAMBOUS, C ;
CONN, AR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (01) :162-187
[10]   ACCELERATION OF THE LEAST PTH ALGORITHM FOR MINIMAX OPTIMIZATION WITH ENGINEERING APPLICATIONS [J].
CHARALAMBOUS, C .
MATHEMATICAL PROGRAMMING, 1979, 17 (03) :270-297