H-INFINITY-MINIMUM ERROR STATE ESTIMATION OF LINEAR STATIONARY-PROCESSES

被引:126
作者
SHAKED, U
机构
[1] Department of Electrical Engineering, Yale University, New Haven
关键词
D O I
10.1109/9.53521
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A state estimator is derived which minimizes the Hoc-norm of the estimation error power spectrum matrix. Two approaches are presented. The first achieves the optimal estimator in the frequency domain by finding the filter transfer function matrix that leads to an equalizing solution. The second approach establishes a duality between the problem of H∞-filtering and the problem of unconstrained input H∞-optimal regulation. Using this duality, recent results for the latter regulation problem are applied which lead to an optimal filter that possesses the structure of the corresponding Kalman filter. The two approaches usually lead to different results. They are compared by a simple example which also demonstrates a clear advantage of the H∞-estimate over the conventional /2-estimate. © 1990 IEEE
引用
收藏
页码:554 / 558
页数:5
相关论文
共 10 条
[1]  
ADAMJAN VM, 1978, AM MATH SOC TRANSL, V111, P133
[2]  
CHANG BC, 1984, IEEE T AUTOMAT CONTR, V29, P880, DOI 10.1109/TAC.1984.1103409
[3]  
DOYLE J, 1988, JUN P ACC ATL, P1691
[4]  
ELSAYED A, 1988, 1988 IEEE INT S CIRC
[5]   ALL OPTIMAL HANKEL-NORM APPROXIMATIONS OF LINEAR-MULTIVARIABLE SYSTEMS AND THEIR L INFINITY-ERROR BOUNDS [J].
GLOVER, K .
INTERNATIONAL JOURNAL OF CONTROL, 1984, 39 (06) :1115-1193
[6]  
GRIMBLE MJ, 1987, IEEE C DIGITAL SIGNA
[7]  
GRIMBLE MJ, 1987, MTNS C AZ
[10]  
YAESH I, 1990, 1990 P BILK INT C NE